- Research
- Open access
- Published:
Multiple solutions for a class of anisotropic p⃗-Laplacian problems
Boundary Value Problems volume 2023, Article number: 89 (2023)
Abstract
In this paper we present some existence and multiplicity results for a class of anisotropic p⃗-Laplacian problems with Dirichlet boundary conditions. In particular, the existence of three solutions is pointed out. The approach is based on variational methods and our main tool is a three critical point theorem.
1 Introduction
In the present work we deal with multiplication results of solutions for the following anisotropic problem

We suppose that Ω is a nonempty bounded open set of the real Euclidean space \({\mathbb{R}}^{N}\), with \(N\geq 2\), whose boundary is of class \(C^{1}\), \(f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}\) is an \(L^{1}\)-Carathéodoy function and \(\vec{p}=(p_{1}, p_{2}, \ldots , p_{N})\), \(\vec{p} \in \mathbb{R}^{N}\), with
respectively the minimum and the maximum value of the anisotropic configuration. Moreover, λ is a positive real parameter.
The anisotropic p⃗-Laplacian operator is defined as
which is a generalization of the usual Laplacian operator in the case of \(p_{i}=2\), for all \(i=1, \ldots , N\). We also observe that formula (1.2) becomes the pseudo-p-Laplacian operator if p⃗ is constant (that is, \(p_{i}=p\) for all \(i=1, \ldots , N\)) (see, for instance, [5, 11]).
The theory of anisotropic Sobolev space appears for the first time in [22, 28, 30, 31, 35], where the authors introduce the anisotropic Sobolev space starting from a generic set of multi-indices. Recently, many authors have investigated anisotropic boundary value problems. For an overview of these subjects, we refer to [3, 4, 9, 13, 14, 18–20, 24] and the references therein. In [18] the authors study the existence of positive solutions for a class of anisotropic quasilinear systems. The approach is based on a suitable combination of the sub-supersolution method with the mountain pass theorem. In [24], the authors use an approximation approach to prove the existence and regularity of the solutions to an anisotropic problem involving a singular nonlinearity.
The theory of anisotropic problems is also extended for the case when the indexes of the operator are continuous functions. Then, the operator describing these problems becomes the following anisotropic \(\vec{p}(x)\)-Laplacian operator
It is easy to see that in the case of \(p_{i}(x)=p(x)\) for all \(i=1, \ldots , N\), the operator (1.3) becomes the pseudo-\(p(x)\)-Laplacian operator (see, for instance, [10]). In this framework, the study of nonlinear elliptic problems involving operators of the type \({p}(x)\)-Laplacian is based on the theory of generalized Lebesgue-Sobolev spaces (see for instance [15, 17, 21, 25–27] and references therein). Nonlinear differential problems involving nonlocal operators as well as non standard and/or non uniform operators have been widely studied (see [12, 16, 29]). Anisotropic problems are of increasing interest, especially for their applications. Operators such as (1.2) model phenomena in which partial derivatives vary with direction. For instance, the study of an epidemic disease in heterogeneous habitat or many reaction–diffusion processes depending on different environments can be expressed by an anisotropic nonlinear operator. For more details about these arguments, we refer to [1, 6, 7, 23, 32, 33, 36, 37] and the references therein.
The aim of this paper is to obtain the existence of multiple solutions for the problem (\(D_{\lambda }^{\vec {p}}\)) using variational methods. In particular, our main tool is a critical points theorem (Theorem 2.1) established in [8]. Here a special case of our main result is presented.
Theorem 1.1
Let \(g: \mathbb{R} \to \mathbb{R}\) be a continuous function which is nonnegative and non zero in \([0,+\infty )\) and nonpositive and nonzero in \((-\infty ,0]\) and such that
Then there exists \(\lambda ^{*} > 0\) such that for each \(\lambda > \lambda ^{*}\) the problem

admits at least four distinct nontrivial weak solutions, two positive and two negative.
The paper is arranged as follows. In Sect. 2 we define some preliminaries and basic notations that we are going to use to define the anisotropic Sobolev space. Moreover, properties of the functional associated to problem (\(D_{\lambda }^{\vec {p}}\)) are pointed out. In Sect. 3, our main result (Theorem 3.1) and consequences are presented (see Theorem 3.2). In particular, under suitable sign conditions for the nonlinearity, in Theorem 3.2 the existence of two positive solutions is established. Finally, an example (see Example 3.4) is presented.
2 Preliminaries and basic notations
The present section is devoted to defining the anisotropic Sobolev space and to recalling some properties and basic results that we will use in the sequel. Given a vector \(\vec{p}=(p_{0},p_{1}, \ldots ,p_{N})\) with \(p_{i} \geq 1\) for \(i=0,1,\ldots , N\), the anisotropic Sobolev space (see [30, Definition 7]) is defined as
endowed with the norm
We define as \(W^{1,\vec{p}}_{0}(\Omega )\) the closure of \(C^{\infty}_{0}(\Omega )\) with respect to the norm (2.2) and denote by \(( W^{1,\vec{p}}_{0}(\Omega ) )^{*}\) its dual space. Moreover, \(( W^{1,\vec{p}}(\Omega ), \Vert \cdot \Vert _{W^{1, \vec{p}}(\Omega )} ) \) and \(( W_{0}^{1,\vec{p}}(\Omega ), \Vert \cdot \Vert _{W^{1, \vec{p}}_{0}(\Omega )} ) \) are separable Banach spaces, which are reflexive if \(p_{i}>1\) for \(i=0,1,\ldots , N\), and, taking into account the smoothness of the boundary the Ω, the embedding theorems are verified, (see [22, 30, 31]).
Here and in the sequel assume \(p^{-}=\min \{p_{1},p_{2},\ldots p_{N}\}>N\). Clearly, from the Hölder inequality, one has
for all \(u \in W^{1,\vec{p}}_{0}(\Omega )\) (see [9, page 234]). Taking into account that \(W^{1,p^{-}}(\Omega )\) is compactly embedded in \(C(\bar{\Omega})\), one has \(\|u\|_{C(\bar{\Omega})} \le k \sum_{i=1}^{N} \Vert \frac {\partial u}{\partial x_{i}} \Vert _{L^{p_{i}}(\Omega )}\) for which \(\Vert u \Vert _{L^{p_{0}}(\Omega )} \le \tilde{k} \sum_{i=1}^{N} \Vert \frac {\partial u}{\partial x_{i}} \Vert _{L^{p_{i}}( \Omega )}\). Hence, on \(W^{1,\vec{p}}_{0}(\Omega )\) we can also define the following norm
which is equivalent to the usual one (2.2).
Now, recalling that the usual Sobolev space \(W^{1,p^{-}}_{0}(\Omega )\) is compactly embedded in \(C^{0}(\bar{\Omega})\), we explicit that one also has
for every \(u \in W^{1,p^{-}}_{0}(\Omega )\), where
with Γ the Gamma function and \(\vert \Omega \vert \) the Lebesgue measure of Ω. In particular, if Ω is the N-dimensional ball, (2.5) is the best constant such that (2.4) is verified (see [34, Formula (6b)]).
Now we recall the following two propositions (see [9, Proposition 2.1] and [9, Proposition 2.2]) that we need for our purposes.
Proposition 2.1
Suppose that \(p^{-}>N\); one has
for each \(u \in W^{1,\vec{p}}_{0}(\Omega )\), where
Moreover, the embedding of \(W^{1,\vec{p}}_{0}(\Omega )\) in \(C^{0} (\bar{\Omega})\) is compact.
Proposition 2.2
Fix \(r>0\). Then for each \(u\in {W^{1,\vec{p}}_{0}(\Omega )}\) such that
one has
where \(T=T_{0} \sum_{i=1}^{N} {p_{i}}^{1/{p_{i}}}\) and \(T_{0}\) is given in (2.7).
Throughout the sequel, we suppose that \(f:\Omega \times \mathbb{R} \rightarrow \mathbb{R}\) is an \(L^{1}\)-Carathéodory function, i.e.:
-
(1)
\(x\mapsto f(x,\xi )\) is measurable for every \(\xi \in \mathbb{R}\);
-
(2)
\(\xi \mapsto f(x,\xi )\) is continuous for almost every \(x \in \Omega \);
-
(3)
for every \(s>0\) there is a function \(l_{s} \in L^{1}(\Omega )\) such that
$$ \sup_{|\xi |\leq s}|f(x, \xi )|\leq l_{s}(x) $$for a.e. \(x\in \Omega \).
We recall that \(u : \Omega \rightarrow \mathbb{R}\) is a weak solution of problem (\(D_{\lambda }^{\vec {p}}\)) if \(u \in W^{1,\vec{p}}_{0}(\Omega )\) satisfies the following condition
for all \(v \in W^{1,\vec{p}}_{0}(\Omega )\).
Finally, we define the functionals \(\Phi , \Psi : W^{1,\vec{p}}_{0}(\Omega ) \rightarrow \mathbb{R}\) by setting
for every \(u \in W^{1,\vec{p}}_{0}(\Omega )\), where
Clearly, Φ and Ψ are Gâteaux differentiable functionals whose Gâteaux derivatives at the point \(u \in W^{1,\vec{p}}_{0}(\Omega )\) are respectively given by
for every \(v \in W^{1,\vec{p}}_{0}(\Omega )\). Moreover, we observe that the critical points in \(W^{1,\vec{p}}_{0}(\Omega )\) of the functional \(I_{\lambda} = \Phi - \lambda \Psi \) are precisely the weak solutions of problem (\(D_{\lambda }^{\vec {p}}\)).
Now we prove the following propositions useful in the sequel.
Proposition 2.3
The functional Φ defined in (2.8) is coercive and sequentially weakly lower semicontinuous. Moreover, its Gâteaux derivative admits a continuous inverse on \(( W^{1,\vec{p}}_{0}(\Omega ) )^{*}\).
Proof
Let Φ the functional defined in (2.8). Put \(p_{j}\) such that
simple computations show
and so Φ is coercive.
Now, we observe that Φ is sequentially weakly lower semicontinuous. Indeed, it is convex and continuous and our claim follows from [38, Proposition 25.20]).
Finally, we prove that \(\Phi '\) admits a continuous inverse on \(( W^{1,\vec{p}}_{0}(\Omega ) )^{*}\). Since \(p_{i}>2\) for \(i=1,\ldots,N\), arguing as [2, Proposition 2.4] one has that \(\Phi '\) is uniformly monotone. Hence, the Browder-Minty Theorem (see [38, Theorem 26.A (d)]) ensures that there exists the inverse \((\Phi ^{-1})'\), which is continuous. □
Proposition 2.4
The functional Ψ is continuously Gâteaux differentiable and its derivative is compact.
Proof
Our aim is to apply [38, Proposition 26.2]. To this end let \(\{u_{n}\}\subset W^{1,\vec{p}}_{0}(\Omega )\) be bounded. Since \(W^{1,\vec{p}}_{0}(\Omega )\) is reflexive (see [31, Theorem 1]), up to a subsequence, we have that
Clearly, since the embedding of \(W^{1,\vec{p}}_{0}(\Omega )\) in \(C^{0} (\bar{\Omega})\) is compact (see Proposition 2.1) we have that
that is
then there exists \(K>0\) such that \(|u_{n}(x) |\leq K\) for all \(x \in \Omega \) and then, since f is an \(L^{1}\)-Carathéodory function, up to a subsequence we obtain that
Let \(v \in W^{1,\vec{p}}_{0}(\Omega )\) be such that \(\Vert v \Vert _{W^{1,\vec{p}}_{0}(\Omega )}\leq 1 \); we observe that
where in the last inequality we use formula (2.6). Finally, from (2.12), we obtain
and from (2.13)
that is \(\Psi '\) is strongly continuous and then, from comma (a) of [38, Proposition 26.2], \(\Psi '\) is compact. □
Our main tool is a three critical point theorem, that we recall here for reader convenience.
Theorem 2.1
(see [8, Theorem 7.1]) Let X be a real Banach space and Φ, \(\Psi : X \rightarrow \mathbb{R}\) be two continuously Gâteaux differentiable functionals with Φ bounded from below. Assume that \(\Phi (0)=\Psi (0)=0\) and that there exist \(r > 0\) and \(\bar{u} \in X\), with \(r <\Phi (\bar{u})\), such that:
Moreover, for each \(\lambda \in \Lambda _{r}= ] \frac {\Phi (\bar{u})}{\Psi (\bar{u})}, \frac {r}{ {\sup_{u \in \Phi ^{-1}(]-\infty ,r])}\Psi (u)}} [\), the functional \(I_{\lambda}=\Phi -\lambda \Psi \) is bounded from below and satisfies the \((PS)\)-condition.
Then, for each \(\lambda \in \Lambda _{r}\), the functional \(I_{\lambda}=\Phi -\lambda \Psi \) has at least three distinct critical points in X.
3 Main result and consequences
This section presents our main result and some consequences. Our goal is to apply the critical point theorem recalled in Sect. 2 (Theorem 2.1). More precisely, we point out an existence result of at least three weak solutions (see Theorem 3.1) and some consequences (Theorem 3.2, Example 3.15). Put
simple calculations show that there is \(x_{0} \in \Omega \) such that \(B(x_{0},R) \subseteq \Omega \) and we denote by
the measure of the N-dimensional ball of radius R.
Let \(x=(x_{1}, \ldots , x_{N})\), \(x_{0}=(x_{01}, \ldots , x_{0N})\) be in \(\mathbb{R}^{N}\) and put
and
where \(|\cdot |_{N}\) is the usual norm in \(\mathbb{R}^{N}\).
Theorem 3.1
Let \(f:\Omega \times \mathbb{R} \rightarrow \mathbb{R}\) be an \(L^{1}\)-Carathéodory function. Assume that there exist two positive constants c and d, with
such that
and
where T is given in Proposition 2.2. Moreover, suppose that
Then, for each \(\lambda \in \tilde{\Lambda}:= ]\mathcal{H} \frac {\max \{{d}^{p^{-}};{d}^{p^{+}} \}}{ \int _{B (x_{0},\frac{R}{2} )} F (x,d )\,dx}, \frac {1}{\max \{{T}^{p^{-}}; {T}^{p^{+}} \}} \frac {\min \{{c}^{p^{-}}\!;\! {c}^{p^{+}} \}}{ \int _{\Omega}\max_{ \vert \xi \vert \leq c} F(x,\xi )\,dx} [\), problem (\(D_{\lambda }^{\vec {p}}\)) has at least three weak solutions.
Proof
Put Φ and Ψ as in (2.8). It is well known that Φ and Ψ satisfy all regularity assumptions requested in Theorem 2.1, and furthermore one has \(\inf_{u\in W^{1,\vec{p}}_{0}(\Omega )} \Phi (u) = \Phi (0) = \Psi (0) = 0\). Our aim is to verify condition (2.14). To this end, put \(r= \min \lbrace (\frac {c}{T} )^{p^{-}}; ( \frac {c}{T} )^{p^{+}} \rbrace \), where T is given in Proposition 2.2. Fix
Clearly, \(\bar{u} \in W^{1,\vec{p}}_{0}(\Omega )\). From (3.3), we obtain that \(\Phi (\bar{u})>r\). Indeed,
Moreover, for all \(u \in W^{1,\vec{p}}_{0}(\Omega )\) such that \(u \in \Phi ^{-1} ( ]- \infty , r ] )\), from Proposition 2.2 one has
So,
for all \(u \in X\) such that \(u \in \Phi ^{-1} ( ]- \infty , r ] )\). Hence,
Therefore, one has
On the other hand, from (3.1) and (3.2), we have
and, taking (3.4) into account, one has
Hence, we obtain
Hence, from (3.9), (3.10) and assumption (3.5), we obtain
Now, we prove that the functional \(I_{\lambda} = \Phi - \lambda \Psi \) is coercive.
Fix \(0<\epsilon < \frac {1}{2^{(p^{-}-1)(N-1)}p^{+}\lambda T_{0} |\Omega |}\), from (3.6) and since f is \(L^{1}\)-Carathéodory, there exists a function \(h_{\epsilon} \in L^{1}(\Omega )\) such that
for each \((x,t) \in \Omega \times \mathbb{R}\). Then, for each \(u \in W^{1,\vec{p}}_{0}(\Omega )\), from formula (2.6), taking (2.10) into account, we have that
that is
and therefore it is coercive. Indeed, let \(u \in W^{1,\vec{p}}_{0}(\Omega )\) be such that \(\Vert u \Vert _{W^{1,\vec{p}}_{0}(\Omega )} \to +\infty \). If \(p_{j}\neq p^{-}\), the coercivity is trivial. Otherwise, it follows since \(0<\epsilon < \frac {1}{\lambda p^{+}N^{p_{j}} T^{p^{-}}_{0} |\Omega |}\).
Clearly, \(I_{\lambda}\) is bounded from below, owing to the fact that it is coercive and sequentially weakly lower semicontinuous. Moreover, it satisfies \((PS)\)-condition owing to Propositions 2.3 and 2.4 (see [39, Example 38.25]).
Hence, all assumptions of Theorem 2.1 are verified and the proof is complete. □
Now, we point out a consequence of our main result for the autonomous case. To be precise, let \(g: \mathbb{R} \to \mathbb{R}\) be a continuous function and consider the anisotropic Dirichlet problem (\(AD_{\lambda }^{\vec {p}}\)) in the Introduction.
Moreover, put
Theorem 3.2
Let \(g: [0,+\infty ) \to [0,+\infty )\) be a nonzero continuous function such that
and
Put \(\lambda ^{*}= \frac {\mathcal{H}}{ \vert B (x_{0},\frac{R}{2} ) \vert } \min \lbrace \inf_{0 < d <1} \frac {d^{p^{-}}}{ G (d )}; \inf_{d \ge 1} \frac {d^{p^{+}}}{ G (d )} \rbrace \).
Then, for every \(\lambda >\lambda ^{*}\), problem (\(AD_{\lambda }^{\vec {p}}\)) admits at least two positive distinct weak solutions.
Proof
Put
and consider the following problem
Since \(g\not \equiv 0\) there is \(d>0\) such \(G(d)=G^{+}(d)=\int _{0}^{d} g^{+}(t)\,dt>0\), so that \(\min \lbrace \inf_{0 < d <1} \frac {d^{p^{-}}}{ G (d )}; \inf_{d \ge 1} \frac {d^{p^{+}}}{ G (d )} \rbrace <+\infty \). To fix ideas, assume \(\min \lbrace \inf_{0 < d <1} \frac {d^{p^{-}}}{ G (d )}; \inf_{d \ge 1} \frac {d^{p^{+}}}{ G (d )} \rbrace = \inf_{0 < d <1} \frac {d^{p^{-}}}{ G (d )}\). Therefore, fixed \(\lambda >\lambda ^{*}\), there is d, with \(0< d<1\) such that \(\lambda > \frac {\mathcal{H}}{ \vert B (x_{0},\frac{R}{2} ) \vert } \frac {d^{p^{-}}}{G(d)}\). On the other hand, from (3.12) one has \(\lim_{t \to 0^{+}}\frac{t^{p^{-}}}{G(t)}=+\infty \) for which there is \(c>0\) small enough such that (3.3) holds and \(\frac{1}{\max \{T^{p^{-}}, T^{p^{+}}\}} \frac{c^{p^{-}}}{G(c)|\Omega |}>\lambda \). Hence, assumption (3.5) is satisfied. Moreover, from (3.11), also the assumption (3.6) is verified and we can apply Theorem 3.1 for which problem (3.14) admits three weak solutions. Arguing in a standard way, such solutions are nonnegative and are also solutions of problem (\(AD_{\lambda }^{\vec {p}}\)) (see, for instance, [9, Lemma 2.2]). Finally, applying the strong maximum principle (see [9, Lemma 2.3]), at least two of them are positive and the proof is achieved. □
Remark 3.3
Theorem 1.1 in the introduction is a consequence of Theorem 3.2.
As an application, we give the following example.
Example 3.4
Fix \(N=2\) and \(\Omega =B(0,2)\), put \(p_{1}=3\), \(p_{2}=4\), and consider the following problem
Since \(\mathcal{H}=\frac {3^{2}}{2^{5}}\pi \), owing to simple computations one has
for which Theorem 3.2 ensures that for each \(\lambda >\lambda ^{*}\) problem (3.15) admits at least two positive weak solutions.
Availability of data and materials
Not applicable.
References
Antontsev, S.N., Shmarev, S.: Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics. Progress in Nonlinear Differential Equations and Their Applications, vol. 48. Birkhäuser, Boston (2002)
Averna, D., Bonanno, G.: Three solutions for a quasilinear two point boundary value problem involving the one-dimensional p-Laplacian. Proc. Edinb. Math. Soc. 47, 257–270 (2004)
Barletta, G.: On a class of fully anisotropic elliptic equations. Nonlinear Anal. 197, 111838 (2020)
Barletta, G., Cianchi, A.: Dirichlet problems for fully anisotropic elliptic equations. Proc. R. Soc. Edinb., Sect. A 147A, 25–60 (2017)
Belloni, M., Kawohl, B.: The pseudo-p-Laplace eigenvalue problem and viscosity solutions as \(p\to \infty \). ESAIM Control Optim. Calc. Var. 10, 28–52 (2004)
Bendahmane, M., Chrif, M., El Manouni, S.: An approximation result in generalized anisotropic Sobolev spaces and applications. Z. Anal. Anwend. 30, 341–353 (2011)
Bendahmane, M., Langlais, M., Saad, M.: On some anisotropic reaction-diffusion systems with \(L^{1}\)-data modeling the propagation of an epidemic disease. Nonlinear Anal. 54, 617–636 (2003)
Bonanno, G.: A critical point theorem via the Ekeland variational principle. Nonlinear Anal. 75, 2992–3007 (2012)
Bonanno, G., D’Aguì, G., Sciammetta, A.: Existence of two positive solutions for anisotropic nonlinear elliptic equations. Adv. Differ. Equ. 26, 229–258 (2021)
Boureanu, M.M., Rădulescu, V.: Anisotropic Neumann problems in Sobolev spaces with variable exponent. Nonlinear Anal. 75, 4471–4482 (2012)
Brasco, L., Franzina, G.: An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities. NoDEA Nonlinear Differ. Equ. Appl. 20, 1795–1830 (2013)
Candito, P., Gasiński, L., Livrea, R., Santos Júnior, J.: Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian. Adv. Nonlinear Anal. 11(1), 357–368 (2022)
Cianchi, A.: A sharp embedding theorem for Orlicz–Sobolev spaces. Indiana Univ. Math. J. 45, 39–65 (1996)
Cianchi, A.: A fully anisotropic Sobolev inequality. Pac. J. Math. 196, 283–295 (2000)
Diening, L., Harjulehto, P., Hästö, P., Ruz̆ic̆ka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)
El Manouni, S., Marino, G., Winkert, P.: Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian. Adv. Nonlinear Anal. 11(1), 304–320 (2022)
Fan, X.L., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m,p(x)}(\Omega )\). J. Math. Anal. 263, 424–446 (2011)
Figueiredo, G., Silva, J.R.S.: Solutions to an anisotropic system via sub-supersolution method and Mountain Pass Theorem. Electron. J. Qual. Theory Differ. Equ. 46, 1 (2019)
Fragalà, I., Gazzola, F., Kawohl, B.: Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21(5), 715–734 (2004)
Fusco, N., Sbordone, C.: Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equ. 18, 153–167 (1993)
Kovác̆ik, O., Rákosník, J.: On the spaces \(L^{p(x)}\) and \(W^{1,p(x)}\). Czechoslov. Math. J. 41, 592–618 (1991)
Kufner, A., Rákosník, J.: Boundary value problems for nonlinear partial differential equations in anisotropic Sobolev spaces (English). C̆asopis pro pĕstování matematiky, vol. 106 (1981), issue 2, pp. 170–185
Kurdila, A.J., Zabarankin, M.: Convex Functional Analysis. Systems & Control: Foundations & Applications. Birkhäuser, Basel (2005)
Leggata, A.R., Miri, S.E.-H.: Anisotropic problem with singular nonlinearity. Complex Var. Elliptic Equ. 61, 496–509 (2016)
Mihăilescu, M., Pucci, P., Rădulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687–698 (2008)
Mihăilescu, M., Rădulescu, V.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Am. Math. Soc. 135, 2929–2937 (2007)
Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)
Nikol’skii, S.M.: An imbedding theorem for functions with partial derivatives considered in different metrics. Izv. Akad. Nauk SSSR, Ser. Mat. 22, 321–336 (1958). English translation: Amer. Math. Soc. Transl. 90 (1970), 27–44
Papageorgiou, N.S.: Double phase problems: a survey of some recent results. Opusc. Math. 42(2), 257–278 (2022)
Rákosník, J.: Some remarks to anisotropic Sobolev spaces I. Beitr. Anal. 13, 55–68 (1979)
Rákosník, J.: Some remarks to anisotropic Sobolev spaces II. Beitr. Anal. 15, 127–140 (1980)
Song, B.: Anisotropic diffusions with singular advections and absorptions, part 1: existence. Appl. Math. Lett. 14, 811–816 (2001)
Song, B.: Anisotropic diffusions with singular advections and absorptions, part 2: uniqueness. Appl. Math. Lett. 14, 817–823 (2001)
Talenti, G.: Some Inequalities of Sobolev Type on Two-Dimensional Spheres. I Internat. Schriftenreihe Numer. Math., vol. 80. Birkhäuser, Basel (1987)
Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ric. Mat. 18, 3–24 (1969)
Vazquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Equations of Porous Medium Type. Oxford University Press, London (2006)
Vétois, J.: The blow-up of critical anisotropic equations with critical directions. NoDEA Nonlinear Differ. Equ. Appl. 18, 173–197 (2011)
Zeidler, E.: Nonlinear Functional Analysis and Its Applications, Vol. II/B, Nonlinear Monotone Operators. Springer, New York (1990)
Zeidler, E.: Nonlinear Functional Analysis and Its Applications, Vol. III, Nonlinear Monotone Operators. Springer, New York (1990)
Acknowledgements
The authors have been partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The paper is partially supported by PRIN 2017 – Progetti di Ricerca di rilevante Interesse Nazionale, “Nonlinear Differential Problems via Variational, Topological and Set-valued Methods” (2017AYM8XW). The third author has been partially supported by FFR-2023-Sciammetta.
Funding
PRIN 2017 – Progetti di Ricerca di rilevante Interesse Nazionale, “Nonlinear Differential Problems via Variational, Topological and Set-valued Methods” (2017AYM8XW).
Author information
Authors and Affiliations
Contributions
All authors wrote and reviewed the manuscript
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bonanno, G., D’Aguì, G. & Sciammetta, A. Multiple solutions for a class of anisotropic p⃗-Laplacian problems. Bound Value Probl 2023, 89 (2023). https://doi.org/10.1186/s13661-023-01774-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-023-01774-7