Skip to main content

Initial boundary value problem for a viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term: decay estimates and blow-up result

Abstract

In this paper, we study the initial boundary value problem for the following viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term where the relaxation function satisfies \(g'(t)\leq -\xi (t)g^{r}(t)\), \(t\geq 0\), \(1\leq r< \frac{3}{2}\). The main goal of this work is to study the global existence, general decay, and blow-up result. The global existence has been obtained by potential-well theory, the decay of solutions of energy has been established by introducing suitable energy and Lyapunov functionals, and a blow-up result has been obtained with negative initial energy.

1 Introduction

In this paper, we consider the following initial-boundary value problem with a delay term

$$ \textstyle\begin{cases} v_{tt}- (a+b \Vert \nabla v \Vert _{2}^{2}+\alpha \int _{\Omega}\nabla v \nabla v_{t}\,dx )\Delta v\\ \quad {}+\int _{0}^{t}g(t-s)\Delta v(s)\,ds +\mu _{1}v_{t}+\mu _{2}v_{t}(t-\tau )= \vert v \vert ^{p-2}v,& x\in \Omega , t>0, \\ v(x,t)=0,& x\in \partial \Omega , t>0, \\ v(x,0)=v_{0}(x),\qquad v_{t}(x,0)=v_{1}(x),& x\in \Omega , \\ v_{t}(x,t-\tau )=f_{0}(x,t-\tau),& x\in \Omega , t\in [0, \tau ) , \end{cases} $$
(1.1)

where \(\Omega \subset \mathbb{R}^{n}\) is a bounded domain with sufficiently smooth boundary Ω. \(p\geq 4, a, b, \alpha , \mu _{1}\) are fixed positive constants, \(\mu _{2}\) is a real number, \(\tau >0\) represents the time delay, and g is a positive function.

In the absence of the Balakrishnan–Taylor damping \((\alpha =0)\), Problem (1.1) is reduced to the well-known nonlinear wave equation with \(b=g=0\) and a Kirchhof-type wave equation with \(g=0\), which has been extensively studied, see for instance [5, 8, 13, 24, 30, 31, 35, 38, 41, 42] and the references therein. Balakrishnan–Taylor damping \((\alpha \neq 0)\), \(g=0\), and \(\mu _{1}=\mu _{2}=0\), was initially proposed by Balakrishnan and Taylor [2], and Bass and Zes [3]. It is related to the panel flutter equation and to the spillover problem. So far, it has been studied by many authors, we refer the interested readers to [12, 15, 32, 39, 43, 44] and the references therein. Zarai and Tatar [44] studied the following problem

$$ v_{tt}- \biggl(a+b \Vert \nabla v \Vert _{2}^{2}+\sigma \int _{\Omega}\nabla v \nabla v_{t}\,dx \biggr)\Delta v+ \int _{0}^{t}h(t-s)\Delta v(s)\,ds=0. $$
(1.2)

They proved the global existence and the polynomial decay of the problem. Exponential decay and blow up of the solution to the problem were established in Tatar and Zarai [39].

It is well known that time-delay effects often appear in many chemical, physical, and economical phenomena because these phenomena depend not only on the present state but also on the past history of the system. Nicaise and Pignotti [33] considered the following wave equation with a delay term

$$ v_{tt}-\Delta v+\mu _{1}v_{t}+ \mu _{2}v_{t}(t-\tau )=0. $$
(1.3)

They obtained some stability results in the case \(0<\mu _{2}<\mu _{1}\). Then, they extended the result to the time-dependent delay case in the work of Nicaise and Pignotti [34]. Kirane and Said-Houari [23] considered a viscoelastic wave equation with time delay

$$ v_{tt}-\Delta v+ \int _{0}^{t}g(t-s)\Delta v(s)\,ds+\mu _{1}v_{t}+\mu _{2}v_{t}(t- \tau )=0. $$
(1.4)

They proved the global well posedness of solutions and established the decay rate of energy for \(0<\mu _{2}<\mu _{1}\). Kafini et al. [17] investigated the following nonlinear wave equation with delay

$$ v_{tt}-\operatorname{div} \bigl( \vert \nabla v \vert ^{m-2}\nabla v \bigr)+\mu _{1}v_{t}+\mu _{1}v_{t}(t- \tau )=b \vert v \vert ^{p-2}v. $$
(1.5)

They proved the blow-up result of solutions with negative initial energy and \(p\geq m\), and we refer the interested readers to [9, 10, 18, 27] and the references therein. For the viscoelastic wave equation with Balakrishnan–Taylor damping and time delay, Lee et al. [25] studied the following equation

$$ \begin{aligned}[b] &v_{tt}- \biggl(a+b \Vert \nabla v \Vert _{2}^{2}+\sigma \int _{\Omega}\nabla v \nabla v_{t}\,dx \biggr)\Delta v \\ &\quad {}+ \int _{0}^{t}g(t-s)\Delta v(s)\,ds+\mu _{0}v_{t}+ \mu _{1}v_{t}(t-\tau )=0 \end{aligned} $$
(1.6)

and established a general energy decay result by suitable Lyapunov functionals. Gheraibia et al. [14] considered the following equation

$$ \begin{aligned}[b] &v_{tt}- \biggl(a+b \Vert \nabla v \Vert _{2}^{2}+\alpha \int _{\Omega}\nabla v \nabla v_{t}\,dx \biggr)\Delta v +\sigma (t) \int _{0}^{t}g(t-s)\Delta v(s)\,ds+ \mu _{1} \vert v_{t} \vert ^{m-2}v_{t} \\ &\quad{} +\mu _{2} \bigl\vert v_{t}(t-\tau ) \bigr\vert ^{m-2}v_{t}(t-\tau )=0 \end{aligned} $$
(1.7)

and proved the general decay result of the solution in the case \(|\mu _{2}|< \mu _{1}\). For the related works of PDEs with time delay, see for instance [6, 7, 11, 16, 1922, 26, 28, 36, 37, 40] and the references therein.

Motivated by the previous work, in this paper, we consider the problem (1.1) and under suitable assumptions on the relaxation functions g, we prove the global existence, general decay and the finite-time blow-up results of the solutions.

The outline of this paper is as follows: In Sect. 2, we give some preliminary results. In Sect. 3, we obtain the global existence of the solution of (1.1). Section 4 and Sect. 5 cover the general decay and blow-up of solutions, respectively.

2 Some preliminaries

In this section, we give some notation for function spaces and preliminary lemmas. Denote by \(\|\cdot \|_{p}\) and \(\|\cdot \|_{H^{1}}\) to the usual \(L^{p}(\Omega )\) norm and \(H^{1}(\Omega )\) norm, respectively.

For the relaxation function g, we assume

\((A_{1})\): \(g:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) is a nonincreasing differentiable function satisfying

$$ a- \int _{0}^{\infty}g(s)\,ds:= l\geq 0. $$
(2.1)

\((A_{2})\): There exist a nonincreasing differentiable function ξ with \(\xi (0)>0\) satisfying

$$ g(t)\geq 0,\qquad g'(t)\leq -\xi (t)g^{r}(t),\quad t\geq 0, 1 \leq r< \frac{3}{2}. $$
(2.2)

\((A_{3})\): The constant p satisfies

$$ p\geq 4,\quad \text{if}\,n=1,2,\qquad 4\leq p\leq \frac{2(n-1)}{n-2},\quad \text{if}\,n\geq 3. $$
(2.3)

\((A_{4})\): The constants \(\mu _{1}\) and \(\mu _{2}\) satisfy

$$ \vert \mu _{2} \vert < \mu _{1}. $$

Assume further that g satisfies

$$ \int _{0}^{\infty}g(s)\,ds< \frac{a(p-2)}{p-2+(1/2\eta )}. $$
(2.4)

Lemma 2.1

(Sobolev–Poincare inequality [1]). Let q be a number with \(2\leq q<\infty \,(n=1,2)\) or \(2\leq q<\frac{2n}{n-2}\,(n\geq 3)\), then, there is a constant \(c_{*}=c_{*}(\Omega ,q)\) such that

$$ \Vert v \Vert _{q}\leq c_{*} \Vert \nabla v \Vert _{2}\quad \textit{for}\ v\in H_{0}^{1}( \Omega ). $$

By using direct calculations, we have

$$ \begin{aligned}[b] {} \int _{0}^{t}g(t-s) \int _{\Omega}v(s)\,dsv_{t}(t)\,dx ={}&{-} \frac{1}{2} \frac{d}{dt} \biggl[ (g\circ v ) (t)- \bigl\Vert v(t) \bigr\Vert _{2}^{2} \int _{0}^{t}g(s)\,ds \biggr] \\ &{} -\frac{1}{2}g(t) \bigl\Vert v(t) \bigr\Vert _{2}^{2}+\frac{1}{2} \bigl(g' \circ v \bigr) (t), \end{aligned} $$
(2.5)

where

$$ (g\circ v ) (t)= \int _{0}^{t}g(t-s) \bigl\Vert v(t)-v(s) \bigr\Vert _{2}^{2}\,ds. $$

To deal with the time-delay term, motivated by Nicaise and Pignotti [33], we introduce a new variable

$$ z(x,\rho ,t)=v_{t}(x,t-\tau \rho ),\quad x\in \Omega , \rho \in (0,1), \,t>0, $$
(2.6)

which gives us

$$ \tau z_{t}(x,\rho ,t)+z_{\rho}(x,\rho ,t)=0,\quad \text{in}\ \Omega \times (0,1)\times (0,\infty ). $$
(2.7)

Then, problem (1.1)is equivalent to

$$ \textstyle\begin{cases} v_{tt}- (a+b \Vert \nabla v \Vert _{2}^{2}+\alpha \int _{\Omega}\nabla v \nabla v_{t}\,dx )\Delta v\\ \quad {}+\int _{0}^{t}g(t-s)\Delta v(s)\,ds +\mu _{1}v_{t}+\mu _{2}z(1,t)= \vert v \vert ^{p-2}v,& \text{$x\in \Omega ,\,t>0$}, \\ \tau z_{t}(\rho ,t)+z_{\rho}(\rho ,t)=0,& \text{$x\in \Omega ,\,\rho \in (0,1),\,t>0$}, \\ z(\rho ,0)=f_{0}(-\tau \rho ),& \text{$x\in \Omega ,\,\rho \in (0,1)$}, \\ v(x,t)=0,& \text{$x\in \partial \Omega ,\,t>0$}, \\ v(x,0)=v_{0}(x),\qquad v_{t}(x,0)=v_{1}(x),& \text{$x\in \Omega $}. \end{cases} $$
(2.8)

Let ζ be a positive constant satisfying

$$ \tau \vert \mu _{2} \vert \leq \zeta \leq \tau \bigl(2\mu _{1}- \vert \mu _{2} \vert \bigr). $$
(2.9)

We first state a local existence theorem that can be established.

Theorem 2.2

Let \((A_{1})\)\((A_{4})\) hold. Then, for every \((v_{0},v_{1})\in H^{1}_{0}(\Omega )\times L^{2}(\Omega )\), \(f_{0}\in L^{2}(( \Omega )\times (0,1))\), there exists a unique local solution of the problem (1.1) in the class

$$ v\in C \bigl([0,T];H^{1}_{0}(\Omega ) \bigr)\cap C^{1} \bigl([0,T];L^{2}( \Omega ) \bigr),\qquad v_{t}\in C \bigl([0,T];H^{1}_{0}(\Omega ) \bigr) \cap L^{2} \bigl([0,T]\times (\Omega ) \bigr). $$

Now, we define the energy associated with problem (2.8) by

$$ \begin{aligned}[b] E(t)={}&\frac{1}{2} \Vert v_{t} \Vert _{2}^{2}+\frac{1}{2} \biggl(a- \int _{0}^{t}g(s)\,ds \biggr) \Vert \nabla v \Vert _{2}^{2} +\frac{b}{4} \Vert \nabla v \Vert _{2}^{4}+ \frac{1}{2} (g\circ \nabla v ) (t) \\ &{} +\frac{\zeta}{2} \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho - \frac{1}{p} \Vert v \Vert _{p}^{p}. \end{aligned} $$
(2.10)

Lemma 2.3

Let \((v,z)\) be a solution of problem (2.8). Then,

$$ E'(t)\leq \frac{1}{2} \bigl(g'\circ \nabla v \bigr) (t)-c_{0} \bigl( \Vert v_{t} \Vert _{2}^{2} + \bigl\Vert z(1,t) \bigr\Vert _{2}^{2} \bigr). $$
(2.11)

Proof

Multiplying the first equation in (2.8) by \(v_{t}\), integrating over Ω, and using (2.5), we obtain

$$ \begin{aligned}[b] &\frac{d}{dt} \biggl[ \frac{1}{2} \Vert v_{t} \Vert _{2}^{2}+ \frac{1}{2} \biggl(a- \int _{0}^{t}g(s)\,ds \biggr) \Vert \nabla v \Vert _{2}^{2} +\frac{b}{4} \Vert \nabla v \Vert _{2}^{4}+\frac{1}{2} (g\circ \nabla v ) (t)-\frac{1}{p} \Vert v \Vert _{p}^{p} \biggr] \\ &\quad =-\alpha \biggl(\frac{1}{2}\frac{d}{dt} \Vert \nabla v \Vert _{2}^{2} \biggr)^{2}- \frac{1}{2}g(t) \Vert \nabla v \Vert _{2}^{2}- \frac{1}{2} \bigl(g' \circ \nabla v \bigr) (t)\\ &\qquad {} -\mu _{1} \Vert v_{t} \Vert _{2}^{2}- \mu _{2} \int _{ \Omega}z(1,t)v_{t}\,dx. \end{aligned} $$
(2.12)

Multiplying the second equation in (2.8) by ζz and integrating over \(\Omega \times (0,1)\), we obtain

$$ \begin{aligned}[b] {}\frac{\zeta}{2} \frac{d}{dt} \int _{\Omega} \int _{0}^{1} \bigl\vert z(\rho ,t) \bigr\vert ^{2}\,d \rho\,dx&= -\frac{\zeta}{2\tau} \int _{\Omega} \int _{0}^{1} \frac{\partial}{\partial \rho} \bigl\vert z(\rho ,t) \bigr\vert ^{2}\,d\rho\,dx \\ &=\frac{\zeta}{2\tau} \bigl( \Vert v_{t} \Vert _{2}^{2}- \bigl\Vert z(1,t) \bigr\Vert _{2}^{2} \bigr). \end{aligned} $$
(2.13)

Using Young’s inequality, we have

$$ -\mu _{2} \int _{\Omega}z(1,t)v_{t}\,dx\leq \frac{ \vert \mu _{2} \vert }{2} \bigl\Vert z(1,t) \bigr\Vert _{2}^{2}+ \frac{ \vert \mu _{2} \vert }{2} \Vert v_{t} \Vert _{2}^{2}. $$
(2.14)

Combining (2.12), (2.13), and (2.14), we obtain

$$\begin{aligned} E'(t)\leq {}&{-}\alpha \biggl(\frac{1}{2} \frac{d}{dt} \Vert \nabla v \Vert _{2}^{2} \biggr)^{2} +\frac{1}{2} \bigl(g'\circ \nabla v \bigr) (t)-\frac{1}{2}g(t) \Vert \nabla v \Vert _{2}^{2} \\ &{}-c_{0} \bigl( \Vert v_{t} \Vert _{2}^{2}+ \bigl\Vert z(1,t) \bigr\Vert _{2}^{2} \bigr), \end{aligned}$$
(2.15)

where \(c_{0}=\min \{\mu _{1}-\frac{\zeta}{2\tau}-\frac{|\mu _{2}|}{2}, \frac{\zeta}{2\tau}-\frac{|\mu _{2}|}{2} \}\), which is positive by (2.9). The proof is complete. □

Next, we define the functionals

$$\begin{aligned} I(t)={}& \biggl(a- \int _{0}^{t}g(s)\,ds \biggr) \Vert \nabla v \Vert _{2}^{2} + \frac{b}{2} \Vert \nabla v \Vert _{2}^{4}+ (g\circ \nabla v ) (t) \\ &{} + \zeta \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho - \Vert v \Vert _{p}^{p} \end{aligned}$$
(2.16)

and

$$\begin{aligned} J(t)={}&\frac{1}{2} \biggl(a- \int _{0}^{t}g(s)\,ds \biggr) \Vert \nabla v \Vert _{2}^{2} +\frac{b}{4} \Vert \nabla v \Vert _{2}^{4}+\frac{1}{2} (g\circ \nabla v ) (t) \\ &{}+\frac{\zeta}{2} \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho - \frac{1}{p} \Vert v \Vert _{p}^{p}. \end{aligned}$$
(2.17)

Then, it is obvious that

$$ E(t)=\frac{1}{2} \Vert v_{t} \Vert _{2}^{2}+J(t). $$
(2.18)

3 Global existence

In this section, we will prove that the global existence of the solution to (1.1) is in time.

Lemma 3.1

Assume that \((A_{1})\), \((A_{3})\)\((A_{4})\) hold, and for any \((v_{0},v_{1})\in H^{1}_{0}(\Omega )\times L^{2}(\Omega )\), such that

$$ I(0)>0\quad \textit{and}\quad \beta= \frac{c_{*}^{p}}{l} \biggl[\frac{2p}{l(p-2)}E(0) \biggr]^{\frac{p-2}{2}}< 1, $$
(3.1)

then,

$$ I(t)>0,\quad \forall t>0. $$
(3.2)

Proof

Since \(I(0) > 0\), then by the continuity of v, there exists a time \(T_{m}>0\) such that

$$ I(t)\geq 0,\quad \forall t\in [0,T_{m}]. $$
(3.3)

From (2.16) and (2.17), we have

$$\begin{aligned} J(t) =&\frac{p-2}{2p} \biggl[ \biggl(a- \int _{0}^{t}g(s)\,ds \biggr) \Vert \nabla v \Vert _{2}^{2}+\frac{b}{2} \Vert \nabla v \Vert _{2}^{4}+ (g\circ \nabla v ) (t)+\zeta \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho \biggr] \\ &{}+\frac{1}{p}I(t) \\ \geq& \frac{p-2}{2p} \biggl[ \biggl(a- \int _{0}^{t}g(s)\,ds \biggr) \Vert \nabla v \Vert _{2}^{2}+\frac{b}{2} \Vert \nabla v \Vert _{2}^{4}+ (g\circ \nabla v ) (t)+\zeta \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho \biggr] \\ \geq& \frac{p-2}{2p} \biggl[ \biggl(a- \int _{0}^{t}g(s)\,ds \biggr) \Vert \nabla v \Vert _{2}^{2} \biggr]. \end{aligned}$$
(3.4)

Thus, from \((A_{1})\), (2.11), (2.18), and (3.4), we obtain

$$ \begin{aligned}[b] l \Vert \nabla v \Vert _{2}^{2}&\leq \biggl(a- \int _{0}^{t}g(s)\,ds \biggr) \Vert \nabla v \Vert _{2}^{2}\\ &\leq \frac{2p}{p-2}J(t) \leq \frac{2p}{p-2}E(t) \leq \frac{2p}{p-2}E(0),\quad \forall t\in [0,T_{m}]. \end{aligned} $$
(3.5)

Exploiting Lemma 2.1, (3.1), and (3.5), we obtain

$$ \begin{aligned}[b] \Vert v \Vert _{p}^{p}&\leq c_{*}^{p} \Vert \nabla v \Vert _{2}^{p}\leq \frac{c_{*}^{p}}{l} \biggl(\frac{2p}{l(p-2)}E(0) \biggr)^{ \frac{p-2}{2}}l \Vert \nabla v \Vert _{2}^{2} \\ &= \beta l \Vert \nabla v \Vert _{2}^{2}< \biggl(a- \int _{0}^{t}g(s)\,ds \biggr) \Vert \nabla v \Vert _{2}^{2}. \end{aligned} $$
(3.6)

Hence, we can obtain

$$ I(t)>0,\quad \forall t\in [0,T_{m}]. $$

By repeating the procedure, \(T_{m}\) is extended to T. The proof is complete. □

Theorem 3.2

Assume that the conditions of Lemma 3.1hold, then the solution (1.1) is global and bounded.

Proof

It suffices to show that \(\|v_{t}\|_{2}^{2}+\|\nabla v\|_{2}^{2}\) is bounded independently of t. By using (2.11), (2.18), and (3.5), we obtain

$$ E(0)\geq E(t)=J(t)+\frac{1}{2} \Vert v_{t} \Vert _{2}^{2}\geq \frac{p-2}{2p} \bigl(l \Vert \nabla v \Vert _{2}^{2} \bigr)+\frac{1}{2} \Vert v_{t} \Vert _{2}^{2}. $$
(3.7)

Therefore, we have

$$ \Vert v_{t} \Vert _{2}^{2}+ \Vert \nabla v \Vert _{2}^{2}\leq K_{1}E(0), $$
(3.8)

where \(K_{1}\) is a positive constant. □

4 General decay

In this section, we prove the general decay result by constructing a suitable Lyapunov functional.

Theorem 4.1

Let \((v_{0},v_{1})\in H_{0}^{1}(\Omega )\times L^{2}(\Omega )\). Assume that \((A_{1})\)\((A_{4})\) hold. Then, there exist two positive constants K and k such that the solution of problem (1.1) satisfies, for all \(\forall t\geq t_{0}\),

$$\begin{aligned} E(t) \leq& Ke^{-k\int _{t_{0}}^{t}\xi (s)\,ds},\quad r=1, \end{aligned}$$
(4.1)
$$\begin{aligned} E(t) \leq& K \biggl[\frac{1}{\int _{t_{0}}^{t}\xi ^{2r-1}(s)\,ds+1} \biggr]^{1/(2r-2)},\quad r>1 . \end{aligned}$$
(4.2)

Moreover, if

$$ \int _{0}^{+ \infty}\biggl[\frac{1}{t\xi ^{2r-1}(t)\,+1} \biggr]^{1/(2r-2)}dt< + \infty ,\quad 1< r< \frac{3}{2}, $$
(4.3)

then

$$ E(t)\leq K \biggl[\frac{1}{\int _{t_{0}}^{t}\xi ^{r}(s)\,ds+1} \biggr]^{1/r-1}, \quad r>1. $$
(4.4)

For this goal, we set

$$ F(t):=E(t)+\varepsilon \Psi (t), $$
(4.5)

where ε is a positive constant to be specified later and

$$ \Psi (t)= \int _{\Omega}vv_{t}\,dx+\frac{\alpha}{4} \Vert \nabla v \Vert _{2}^{4}. $$
(4.6)

In order to show our stability result, we need the following lemmas:

Lemma 4.2

Let \((v,z)\) be a solution of problem (2.8). Then, there exist two positive constants \(\alpha _{1}\) and \(\alpha _{2}\) such that

$$ \alpha _{1}F(t)\leq E(t)\leq \alpha _{2} F(t), $$
(4.7)

for \(\varepsilon >0\) small enough.

Lemma 4.3

Assume that g satisfies \((A_{1})\) and \((A_{2})\), then

$$ \int _{0}^{\infty}\xi (t)g^{1-\theta}(t)\,dt\leq +\infty ,\quad \forall \theta < 2-r . $$

Corollary 4.4

([4]) Assume that g satisfies \((A_{1})\) and \((A_{2})\), and v is the solution of (1.1), then

$$ \xi (t) (g\circ \nabla u ) (t)\leq \bigl[-E'(t) \bigr]^{ \frac{1}{2r-1}}. $$

Lemma 4.5

Let \((v,z)\) be a solution of problem (2.8). Then, the functional \(F(t)\) satisfies

$$ F'(t)\leq -k_{1}E(t)+k_{2} (g\circ \nabla v ) (t),\quad \forall t\geq t_{0}, $$
(4.8)

where \(k_{1}\) and \(k_{2}\) are some positive constants.

Proof

Taking a derivation of (4.5), using (2.8), and Lemma 2.3, we obtain

$$ \begin{aligned}[b] F'(t)={}&E'(t)+ \varepsilon \int _{\Omega}v_{t}^{2}\,dx+\varepsilon \int _{ \Omega}vv_{tt}\,dx+\varepsilon \alpha \Vert \nabla v \Vert _{2}^{2} \int _{\Omega} \nabla v \nabla v_{t}\,dx \\ \leq{}&{-}(c_{0}-\varepsilon ) \Vert v_{t} \Vert _{2}^{2}-c_{0} \bigl\Vert z(1,t) \bigr\Vert _{2}^{2}- \varepsilon a \Vert \nabla v \Vert _{2}^{2} -\epsilon b \Vert \nabla v \Vert _{2}^{4}+ \varepsilon \Vert v \Vert _{p}^{p} \\ &{} +\varepsilon \int _{\Omega}\nabla v \int _{0}^{t}g(t-s)\nabla v(s)\,ds\,dx- \varepsilon \mu _{1} \int _{\Omega}vv_{t}\,dx -\varepsilon \mu _{2} \int _{ \Omega}z(1,t)v\,dx. \end{aligned} $$
(4.9)

By using Hölder’s, Young’s, Sobolev–Poincare inequalities, and \((A_{1})\), we obtain

$$ \int _{\Omega}\nabla v \int _{0}^{t}g(t-s)\nabla v(s)\,ds\,dx\leq \bigl( \eta +(a-l) \bigr) \Vert \nabla v \Vert _{2}^{2}+ \frac{(a-l)}{4\eta} (g \circ \nabla v ) (t) $$
(4.10)

and

$$ \mu _{1} \int _{\Omega}vv_{t}\,dx\leq \eta \mu _{1}^{2}c_{*}^{2} \Vert \nabla v \Vert _{2}^{2}+\frac{1}{4\eta} \Vert v_{t} \Vert _{2}^{2} $$
(4.11)

and

$$ \mu _{2} \int _{\Omega}z(1,t)v\,dx\leq \eta \mu _{2}^{2}c_{*}^{2} \Vert \nabla v \Vert _{2}^{2}+\frac{1}{4\eta} \bigl\Vert z(1,t) \bigr\Vert _{2}^{2}. $$
(4.12)

Combining (4.10)–(4.12) and (4.9), we obtain

$$ \begin{aligned}[b] F'(t)\leq{}&{-} \biggl\{ c_{0}-\varepsilon \biggl(1+\frac{1}{4\eta} \biggr) \biggr\} \Vert v_{t} \Vert _{2}^{2} - \biggl\{ c_{0}-\frac{\varepsilon}{4\eta} \biggr\} \bigl\Vert z(1,t) \bigr\Vert _{2}^{2}-\varepsilon b \Vert \nabla v \Vert _{2}^{4} \\ &{} -\varepsilon \bigl\{ l-\eta \bigl(1+\mu _{1}^{2}c_{*}^{2} \mu _{2}^{2}c_{*}^{2}\bigr) \bigr\} \Vert \nabla v \Vert _{2}^{2} + \frac{(a-l)}{4\eta} (g\circ \nabla v ) (t)+\varepsilon \Vert v \Vert _{p}^{p}. \end{aligned} $$
(4.13)

At this point, we choose η and ε so small that (4.7) remains valid and

$$ l-\eta \bigl(1+\mu _{1}^{2}c_{*}^{2} \mu _{2}^{2}c_{*}^{2}\bigr)>0, \qquad c_{0}- \varepsilon \biggl(1+\frac{1}{4\eta} \biggr)>0, \qquad c_{0}- \frac{\varepsilon}{4\eta}>0 . $$

Consequently, inequality (4.13) becomes

$$ F'(t)\leq -k_{1}E(t)+k_{2} (g\circ \nabla v ) (t),\quad \forall t\geq t_{0}, $$
(4.14)

where \(k_{i},\,i=1,2\). are some positive constants. □

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Multiplying (4.14) by \(\xi (t)\), we obtain

$$ \xi (t) F'(t)\leq -k_{1}\xi (t)E(t)+k_{2}\xi (t) (g\circ \nabla u ) (t),\quad \forall t\geq t_{0}. $$
(4.15)

4.1 Case: \(r=1\)

Using \((A_{2})\) and (2.11), then inequality (4.14) becomes

$$ \begin{aligned} \xi (t)F'(t)&\leq -k_{1}\xi (t)E(t)+k_{2}\xi (t) (g\circ \nabla v ) (t) \\ &\leq -k_{1}\xi (t)E(t)-k_{2} \bigl(g' \circ \nabla v \bigr) (t) \\ &\leq -k_{1}\xi (t)E(t)-2k_{2}E'(t). \end{aligned} $$
(4.16)

We choose \(G(t)=\xi (t)F(t)+2k_{2}E(t)\) that is equivalent to \(E(t)\) because of (4.7). Then, from (4.16) we can obtain

$$ G'(t)\leq -k_{0}\xi (t)E(t)\leq -k \xi (t)G(t),\quad \forall t\geq t_{0}. $$
(4.17)

A simple integration of (4.17), leads to

$$ G(t)\leq G(t_{0})e^{-k\int _{t_{0}}^{t}\xi (s)\,ds},\quad \forall t \geq t_{0}, $$
(4.18)

which implies

$$ E(t)\leq Ke^{-k\int _{t_{0}}^{t}\xi (s)\,ds},\quad \forall t\geq t_{0}. $$
(4.19)

4.2 Case: \(r>1\)

Applying Corollary 4.4, then inequality (4.15) becomes

$$ \xi (t)F'(t)\leq -k_{1}\xi (t)E(t)+k_{2} \bigl[-E'(t) \bigr]^{1/(2r-1)}, \quad \forall t\geq t_{0}. $$
(4.20)

Multiplying (4.20) by \(\xi ^{\nu}(t)E^{\nu}(t)\) where \(\nu =2r-2\), we have

$$ \begin{aligned}[b] & \xi ^{\nu +1}(t)E^{\nu}(t)F'(t) \\ &\quad\leq -k_{1}\xi ^{\nu +1}(t)E^{\nu +1}(t)+k_{2} \xi ^{\nu}(t)E^{\nu}(t) \bigl[-E'(t) \bigr]^{1/(\nu +1)},\quad \forall t\geq t_{0}. \end{aligned} $$
(4.21)

Using Young’s inequality with \(q=\nu +1\) and \(q^{*}=\frac{\nu +1}{\nu}\), yields

$$ \begin{aligned}[b] &\xi ^{\nu +1}(t)E^{\nu}(t)F'(t) \\ &\quad \leq -k_{1}\xi ^{\nu +1}(t)E^{\nu +1}(t) +k_{2} \bigl[\eta \xi ^{ \nu +1}(t)E^{\nu +1}(t)-C_{\eta}E'(t) \bigr] \\ &\quad =- (k_{1}-\eta k_{2} )\xi ^{\nu +1}(t)E^{\nu +1}(t)-C_{ \eta}E'(t), \quad \forall t\geq t_{0}. \end{aligned} $$
(4.22)

At this point, we choose \(\eta <\frac{k_{1}}{k_{2}}\) and recall that \(\xi'(t)\leq0\) and \(E'(t)\leq0\), we obtain

$$ \begin{aligned} \bigl(\xi ^{\nu +1}E^{\nu}F \bigr)'(t) &\leq \xi ^{\nu +1}(t)E^{\nu}(t)F'(t) \\ &\leq -k_{3}\xi ^{\nu +1}(t)E^{\nu +1}(t)-k_{4}E'(t), \quad \forall t \geq t_{0}, \end{aligned} $$

which implies

$$ \bigl(\xi ^{\nu +1}E^{\nu}F+k_{4}F \bigr)'(t)\leq -k_{3}\xi ^{\nu +1}(t)E^{ \nu +1}(t), \quad \forall t\geq t_{0}. $$
(4.23)

We choose \(G(t)=\xi ^{\nu +1}(t)E^{\nu}(t)F(t)+k_{4}E(t)\) that is equivalent to \(E(t)\). Then,

$$ \begin{aligned}[b] G'(t)&\leq -k_{3}\xi ^{\nu +1}(t)G^{\nu +1}(t) \\ &=-k_{3}\xi ^{2r-1}(t)G^{2r-1}(t),\quad \forall t\geq t_{0}. \end{aligned} $$
(4.24)

A simple integration of (4.24) and using the fact that \(G(t)\sim E(t)\), leads to

$$ E(t)\leq K \biggl[\frac{1}{\int _{t_{0}}^{t}\xi ^{2r-1}(s)\,ds+1} \biggr]^{1/(2r-2)}, \quad \forall t\geq t_{0}. $$
(4.25)

4.3 Case: \(1< r<3/2\)

To establish (4.4), we note that from simple calculations show that (4.2) and (4.3) yield

$$ \int _{t_{0}}^{\infty}E(t)< \infty . $$

Next, let

$$ \sigma (t)= \int _{0}^{t} \bigl\Vert \nabla v(t)-\nabla v(t-s) \bigr\Vert _{2}^{2}\,ds, $$

then, we have

$$ \begin{aligned} \sigma (t)&\leq c \int _{0}^{t} \bigl[ \bigl\Vert \nabla v(t) \bigr\Vert _{2}^{2}+ \bigl\Vert \nabla v(t-s) \bigr\Vert _{2}^{2} \bigr]\,ds \leq c \int _{0}^{t} \bigl[E(t)+E(t-s) \bigr]\,ds \leq 2c \int _{0}^{t}E(t-s)\,ds \\ &=2c \int _{0}^{t}E(s)\,ds\leq 2c \int _{0}^{\infty}E(s)\,ds< \infty . \end{aligned} $$

Applying Jensens’s inequality for the second term on the right-hand side of (4.15) and using \((A_{2})\), we obtain

$$ \begin{aligned}[b] \xi(t) F'(t)&\leq -k_{1}\xi (t)E(t)+k_{2}\xi (t) (g\circ \nabla v ) (t) \\ &=-k_{1}\xi (t)E(t)+k_{2}\frac{\sigma (t)}{\sigma (t)} \int _{0}^{t} \bigl[\xi ^{r}(s)g^{r}(s) \bigr]^{\frac{1}{r}} \bigl\Vert \nabla v(t)-\nabla v(t-s) \bigr\Vert _{2}^{2}\,ds \\ &\leq -k_{1}\xi (t)E(t)+k_{2}\sigma (t) \biggl[ \frac{1}{\sigma (t)} \int _{0}^{t}\xi ^{r}(s)g^{r}(s) \bigl\Vert \nabla v(t)-\nabla v(t-s) \bigr\Vert _{2}^{2}\,ds \biggr]^{\frac{1}{r}} \\ &\leq -k_{1}\xi (t)E(t)+k_{2}\sigma ^{\frac{r-1}{r}}(t) \xi ^{r-1}(0) \biggl[ \int _{0}^{t}\xi (s)g^{r}(s) \bigl\Vert \nabla v(t)-\nabla v(t-s) \bigr\Vert _{2}^{2}\,ds \biggr]^{\frac{1}{r}} \\ &\leq -k_{1}\xi (t)E(t)+k_{2} \biggl[ \int _{0}^{t}-g'(s) \bigl\Vert \nabla v(t)- \nabla v(t-s) \bigr\Vert _{2}^{2}\,ds \biggr]^{\frac{1}{r}} \\ &\leq -k_{1}\xi (t)E(t)+k_{2} \bigl[-E'(t) \bigr]^{\frac{1}{r}}. \end{aligned} $$
(4.26)

Multiplying (4.26) by \(\xi ^{\nu}(t)E^{\nu}(t)\), where \(\nu =r-1\), we have

$$ \xi ^{\nu +1}(t)E^{\nu}(t)F'(t) \leq -k_{1}\xi ^{\nu +1}(t)E^{\nu +1}(t)+k_{2} \xi ^{\nu}(t)E^{\nu}(t) \bigl[-E'(t) \bigr]^{\frac{1}{\nu +1}},\quad \forall t\geq t_{0}. $$
(4.27)

The remainder of the proof is similar to (4.2). The proof is complete.

5 Blow up

In this section, we state and prove the blow up of the solution to problem (1.1) with negative initial energy.

Let

$$ H(t) = -E(t), $$
(5.1)

where \(E(0)<0\). From (5.1) and (2.11) we have

$$ H'(t)=-E'(t)\geq c_{0} \bigl( \Vert v_{t} \Vert _{2}^{2}+ \bigl\Vert z(1,t) \bigr\Vert _{2}^{2} \bigr)\geq 0 $$
(5.2)

and \(H(t)\) is an increasing function. Using (2.10) and (5.1), we obtain

$$ 0< H(0)\leq H(t)\leq \frac{1}{p} \Vert v \Vert _{p}^{p}. $$
(5.3)

Moreover, similar to the work of Messaoudi [29], we can obtain the following lemma that is needed later.

Lemma 5.1

Suppose that \((A_{1})\), \((A_{3})\), \((A_{4})\), (2.4), and \(E(0)<0\) hold. Then, we have, for any \(2\leq s\leq p\),

$$ \Vert v \Vert _{p}^{s}\leq C \biggl(-H(t)- \Vert v_{t} \Vert _{2}^{2}- \Vert \nabla v \Vert ^{4}_{2}-(g \circ \nabla v) (t)- \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho + \Vert v \Vert _{p}^{p} \biggr), $$

where C is a positive constant.

Theorem 5.2

Let the conditions of Lemma 5.1hold. Then, the solution of problem (1.1) blows up in finite time.

Proof

Set

$$ \Gamma (t)=H^{1-\sigma}(t)+\varepsilon \int _{\Omega}vv_{t}\,dx+ \frac{\alpha}{4} \Vert \nabla v \Vert _{2}^{4}, $$
(5.4)

where \(\varepsilon >0\) is a small constant that will be chosen later, and

$$ 0< \sigma \leq \min \biggl\{ \frac{p-2}{2p}, \frac{p-2}{p} \biggr\} . $$
(5.5)

Taking a derivative of (5.4) and using the first equation in (2.8), we have

$$ \begin{aligned}[b] \Gamma '(t)={}&(1-\sigma )H^{-\sigma}(t)H'(t)+\varepsilon \int _{\Omega}v_{t}^{2}\,dx+ \varepsilon \int _{\Omega}vv_{tt}\,dx +\alpha \Vert \nabla u \Vert _{2}^{2} \int _{ \Omega}\nabla u\nabla u_{t}\,dx \\ ={}&(1-\sigma )H^{-\sigma}(t)H'(t)+\varepsilon \Vert v_{t} \Vert _{2}^{2}- \varepsilon a \Vert \nabla v \Vert _{2}^{2} -\epsilon b \Vert \nabla v \Vert _{2}^{4}+ \varepsilon \Vert v \Vert _{p}^{p} \\ &{} +\varepsilon \int _{\Omega}\nabla v \int _{0}^{t}g(t-s)\nabla v(s)\,ds\,dx- \varepsilon \mu _{1} \int _{\Omega}vv_{t}\,dx -\varepsilon \mu _{2} \int _{ \Omega}z(1,t)v\,dx. \end{aligned} $$
(5.6)

Applying Hölder’s and Young’s inequalities, for \(\eta ,\delta >0\), we have

$$\begin{aligned}& \int _{\Omega}\nabla v \int _{0}^{t}g(t-s)\nabla v(s)\,ds\,dx \geq \biggl(1- \frac{1}{4\eta} \biggr) \biggl( \int _{0}^{t}g(s)\,ds \biggr) \Vert \nabla v \Vert _{2}^{2}- \eta (g\circ \nabla v) (t), \end{aligned}$$
(5.7)
$$\begin{aligned}& \mu _{1} \int _{\Omega}vv_{t}\,dx\leq \delta \mu _{1}^{2} \Vert v \Vert _{2}^{2} + \frac{1}{4\delta} \Vert v_{t} \Vert _{2}^{2} \leq \delta \mu _{1}^{2} \Vert v \Vert _{2}^{2}+ \frac{1}{4 c_{0}\delta}H'(t) \end{aligned}$$
(5.8)

and

$$ \mu _{2} \int _{\Omega}z(1,t)v\,dx\leq \delta \mu _{2}^{2} \Vert v \Vert _{2}^{2}+ \frac{1}{4\delta} \bigl\Vert z(1,t) \bigr\Vert _{2}^{2}\leq \delta \mu _{2}^{2} \Vert v \Vert _{2}^{2}+ \frac{1}{4 c_{0}\delta}H'(t). $$
(5.9)

Combining these estimates (5.7)–(5.9) and (5.6), we obtain

$$\begin{aligned} \Gamma '(t) \geq& \biggl\{ (1-\sigma )H^{-\sigma}(t)- \frac{\varepsilon}{2c_{0}\delta} \biggr\} H'(t)+\varepsilon \Vert v_{t} \Vert _{2}^{2} -\epsilon b \Vert \nabla v \Vert _{2}^{4}+\varepsilon \Vert v \Vert _{p}^{p} \\ &{} -\varepsilon \biggl\{ a- \biggl(1-\frac{1}{4\eta} \biggr) \biggl( \int _{0}^{t}g(s)\,ds \biggr) \biggr\} \Vert \nabla v \Vert _{2}^{2} - \varepsilon \delta \bigl(\mu _{1}^{2}+\mu _{2}^{2}\bigr) \Vert v \Vert _{2}^{2} \\ &{} -\varepsilon \eta (g\circ \nabla v) (t). \end{aligned}$$
(5.10)

Applying (2.10) to the last term \(\|v\|_{p}^{p}\) on the right-hand side of (5.10) and using (5.1), we see that

$$\begin{aligned} \Gamma '(t) \geq &\biggl\{ (1-\sigma )H^{-\sigma}(t)- \frac{\varepsilon}{2c_{0}\delta} \biggr\} H'(t)+\varepsilon \biggl( \frac{p}{2}+1 \biggr) \Vert v_{t} \Vert _{2}^{2} +\varepsilon b \biggl( \frac{p}{4}-1 \biggr) \Vert \nabla v \Vert _{2}^{4} \\ &{} +\varepsilon \biggl\{ a \biggl(\frac{p}{2}-1 \biggr)- \biggl( \frac{p}{2} -1+\frac{1}{4\eta} \biggr) \int _{0}^{t}g(s)\,ds \biggr\} \Vert \nabla v \Vert _{2}^{2}+\varepsilon \biggl(\frac{p}{2}- \eta \biggr) (g \circ \nabla v) (t) \\ &{} -\varepsilon \delta \bigl(\mu _{1}^{2}+\mu _{2}^{2}\bigr) \Vert v \Vert _{2}^{2} + \varepsilon \frac{p\zeta}{2} \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho + \varepsilon pH(t), \end{aligned}$$
(5.11)

for some number η with \(0<\eta <p/2\). By recalling (2.4), the estimate (5.11) reduces to

$$ \begin{aligned}[b] \Gamma '(t)\geq {}&\biggl\{ (1-\sigma )H^{-\sigma}(t)- \frac{\varepsilon}{2c_{0}\delta} \biggr\} H'(t) +\varepsilon \biggl( \frac{p}{2}+1 \biggr) \Vert v_{t} \Vert _{2}^{2} +\varepsilon c_{1} \Vert \nabla v \Vert _{2}^{4}\\ &{}+ \varepsilon c_{2} \Vert \nabla v \Vert _{2}^{2} +\varepsilon c_{3}(g\circ \nabla v) (t) -\varepsilon \delta \bigl( \mu _{1}^{2}+\mu _{2}^{2} \bigr) \Vert v \Vert _{2}^{2}\\ &{}+\varepsilon \frac{p\zeta}{2} \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho +\varepsilon pH(t), \end{aligned} $$
(5.12)

where

$$ c_{1}=b \biggl(\frac{p}{4}-1 \biggr)>0,\quad c_{2}=a \biggl(\frac{p}{2}-1 \biggr) - \biggl( \frac{p}{2}-1+\frac{1}{4\eta} \biggr) \int _{0}^{t}g(s)\,ds>0, \quad c_{3}= \frac{p}{2}-\eta >0. $$

Therefore, by taking \(\delta =H(t)^{\sigma}/2c_{0}k\), where \(k>0\) is to be specified later, and exploiting (5.3), we se that

$$ H(t)^{\sigma} \Vert v \Vert _{2}^{2} \leq \frac{1}{p^{\sigma}} \Vert v \Vert _{p}^{\sigma p} \Vert v \Vert _{2}^{2} \leq \frac{c_{p}^{2}}{p^{\sigma}} \Vert v \Vert _{p}^{\sigma p+2}. $$
(5.13)

Substituting (5.13) into (5.12), we obtain

$$ \begin{aligned}[b] \Gamma '(t)\geq{}& \bigl\{ (1-\sigma )-\varepsilon k \bigr\} H^{-\sigma}(t)H'(t) + \varepsilon \biggl(\frac{p}{2}+1 \biggr) \Vert v_{t} \Vert _{2}^{2} + \varepsilon c_{1} \Vert \nabla v \Vert _{2}^{4}\\ &{}+\varepsilon c_{2} \Vert \nabla v \Vert _{2}^{2} +\varepsilon c_{3}(g\circ \nabla v) (t)+\varepsilon c_{4} \Vert v \Vert _{p}^{p} - \varepsilon \frac{c_{5}}{k} \Vert v \Vert _{p}^{\sigma p+2}\\ &{}+ \varepsilon \frac{p\zeta}{2} \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho +\varepsilon pH(t), \end{aligned} $$
(5.14)

where \(c_{5}=(c_{p}^{2}(\mu _{1}^{2}+\mu _{2}^{2}))/2c_{0}p^{\sigma}\). From (5.5) and Lemma 5.1, for \(s=\sigma p+2\leq p\), we deduce

$$ \Vert v \Vert _{p}^{\sigma p+2}\leq C \biggl(-H(t)- \Vert v_{t} \Vert _{2}^{2}- \Vert \nabla v \Vert _{2}^{4}-(g\circ \nabla v) (t)- \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d \rho + \Vert v \Vert _{p}^{p} \biggr). $$
(5.15)

Combining (5.15) with (5.14), we obtain

$$ \begin{aligned}[b] \Gamma '(t)\geq{}& \bigl\{ (1-\sigma )-\varepsilon k \bigr\} H^{-\sigma}(t)H'(t) + \varepsilon \biggl(\frac{p}{2}+1+\frac{c_{5}}{k}C \biggr) \Vert v_{t} \Vert _{2}^{2}+ \varepsilon c_{2} \Vert \nabla v \Vert _{2}^{2} \\ &{} +\varepsilon \biggl(c_{1}+\frac{c_{5}}{k}C \biggr) \Vert \nabla v \Vert _{2}^{4}+ \varepsilon \biggl(c_{3}+\frac{c_{5}}{k}C \biggr) (g\circ \nabla v) (t)- \frac{c_{5}}{k}C \Vert v \Vert _{p}^{p} \\ &{} +\varepsilon \biggl(\frac{p\zeta}{2}+\frac{c_{5}}{k}C \biggr) \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho +\varepsilon \biggl(p+ \frac{c_{5}}{k}C \biggr)H(t). \end{aligned} $$
(5.16)

Subtracting and adding \(\varepsilon \gamma H(t)\) on the right-hand side of (5.16), using (2.10) and (5.1), we deduce

$$\begin{aligned} \Gamma '(t) \geq &\bigl\{ (1-\sigma )-\varepsilon k \bigr\} H^{-\sigma}(t)H'(t) + \varepsilon \biggl(\frac{p}{2}-\frac{\gamma}{2}+1+ \frac{c_{5}}{k}C \biggr) \Vert v_{t} \Vert _{2}^{2} \\ &{}+\varepsilon \biggl(c_{2}- a\frac{\gamma}{2} \biggr) \Vert \nabla v \Vert _{2}^{2} +\varepsilon \biggl(c_{1}-b\frac{\gamma}{4}+ \frac{c_{5}}{k}C \biggr) \Vert \nabla v \Vert _{2}^{4} \\ &{}+ \varepsilon \biggl(c_{3}- \frac{\gamma}{2}+\frac{c_{5}}{k}C \biggr) (g\circ \nabla v) (t)+ \biggl( \frac{\gamma}{p}- \frac{c_{5}}{k}C \biggr) \Vert v \Vert _{p}^{p} \\ &{} +\varepsilon \biggl(\frac{p\zeta}{2}-\frac{\gamma \zeta}{2}+ \frac{c_{5}}{k}C \biggr) \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho \\ &{}+ \varepsilon \biggl(p-\gamma + \frac{c_{5}}{k}C \biggr)H(t)+ \varepsilon \gamma E_{1}. \end{aligned}$$
(5.17)

First, we fix γ such that

$$ 0< \gamma < \min \biggl\{ p,\frac{2c_{2}}{a},\frac{4c_{1}}{b},2c_{3}, \biggr\} . $$

Secondly, we take k large enough such that

$$ \frac{\gamma}{p}-\frac{c_{5}}{k}C>0. $$

Once k is fixed, we select \(\varepsilon >0\) small enough so that

$$ (1-\sigma )-\varepsilon k>0,\quad \text{and}\quad \Gamma (0)=H^{1-\sigma}(0)+ \varepsilon \int _{\Omega}v_{0}v_{1}\,dx+ \frac{\alpha}{4} \Vert \nabla v_{0} \Vert _{2}^{4}>0. $$

Therefore, we obtain from (5.17) that

$$\begin{aligned} \Gamma '(t) \geq& \omega \biggl( \Vert v_{t} \Vert _{2}^{2}+ \Vert \nabla v \Vert _{2}^{2}+ \Vert \nabla v \Vert _{2}^{4}+(g\circ \nabla v) (t) \\ &{}+ \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d \rho + \Vert v \Vert _{p}^{p}+H(t) \biggr), \end{aligned}$$
(5.18)

where ω is a positive constant.

We now estimate \(\Gamma (t)^{\frac{1}{1-\sigma}}\). By Hölder’s inequality, we have

$$ \biggl\vert \int _{\Omega}vv_{t}\,dx \biggr\vert \leq \Vert v \Vert _{2} \Vert v_{t} \Vert _{2}\leq C_{1} \Vert v \Vert _{p} \Vert v_{t} \Vert _{2}, $$
(5.19)

which implies

$$ \biggl\vert \int _{\Omega}vv_{t}\,dx \biggr\vert ^{\frac{1}{1-\sigma}}\leq C_{1} \Vert v \Vert _{p}^{\frac{1}{1-\sigma}} \Vert v_{t} \Vert _{2}^{\frac{1}{1-\sigma}}. $$
(5.20)

Young’s inequality yields

$$ \biggl\vert \int _{\Omega}vv_{t}\,dx \biggr\vert ^{\frac{1}{1-\sigma}}C_{1} \bigl( \Vert v \Vert _{p}^{\frac{\mu}{1-\sigma}}+ \Vert v_{t} \Vert _{2}^{ \frac{\vartheta}{1-\sigma}} \bigr), $$
(5.21)

for \(\frac{1}{\mu}+\frac{1}{\vartheta}=1\). To obtain \(\frac{\mu}{1-\sigma}= \frac{2}{1-2\sigma}\leq p\), by (5.5), we take \(\vartheta= 2(1-\sigma )\). Therefore, (5.21) becomes

$$ \biggl\vert \int _{\Omega}vv_{t}\,dx \biggr\vert ^{\frac{1}{1-\sigma}}C_{1} \bigl( \Vert v \Vert _{p}^{s}+ \Vert v_{t} \Vert _{2}^{2} \bigr), $$

where \(s=\frac{2}{1-2\sigma}\). Using Lemma 5.1, we obtain

$$\begin{aligned} \biggl\vert \int _{\Omega}vv_{t}\,dx \biggr\vert ^{\frac{1}{1-\sigma}} \leq& C_{1} \biggl(H(t)+ \Vert v_{t} \Vert _{2}^{2}+ \Vert \nabla v \Vert _{2}^{4}+(g\circ \nabla v) (t) \\ &{}+ \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho + \Vert v \Vert _{p}^{p} \biggr). \end{aligned}$$
(5.22)

Combining (5.4) and (5.22), we obtain

$$ \begin{aligned}[b] \Gamma ^{\frac{1}{1-\sigma}}(t)={}& \biggl(H^{1-\sigma}(t)+\varepsilon \int _{\Omega}vv_{t}\,dx+\frac{\alpha}{4} \Vert \nabla v \Vert _{2}^{4} \biggr)^{ \frac{1}{1-\sigma}} \\ \leq{}& c_{6} \biggl(H(t)+ \Vert v_{t} \Vert _{2}^{2}+ \Vert \nabla v \Vert _{2}^{4}+(g \circ \nabla v) (t)\\ &{}+ \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d\rho + \Vert v \Vert _{p}^{p}+ \Vert \nabla v \Vert _{2}^{\frac{4}{1-\sigma}} \biggr). \end{aligned} $$
(5.23)

We note from (3.8) and (5.3) that

$$ \Vert \nabla v \Vert _{2}^{\frac{4}{1-\sigma}}\leq \bigl(K_{1}E(0) \bigr)^{ \frac{2}{1-\sigma}}\leq \bigl(K_{1}E(0) \bigr)^{\frac{2}{1-\sigma}} \frac{H(t)}{H(0)}. $$
(5.24)

It follows from (5.23) and (5.24) that

$$ \Gamma ^{\frac{1}{1-\sigma}}(t)\leq c_{7} \biggl(H(t)+ \Vert v_{t} \Vert _{2}^{2}+ \Vert \nabla v \Vert _{2}^{4}+(g\circ \nabla v) (t)+ \int _{0}^{1} \bigl\Vert z(\rho ,t) \bigr\Vert _{2}^{2}\,d \rho + \Vert v \Vert _{p}^{p} \biggr). $$
(5.25)

Combining (5.25) with (5.18), we find that

$$ \Gamma '(t)\geq \kappa \Gamma ^{\frac{1}{1-\sigma}}(t), \quad t\geq 0. $$
(5.26)

A simple integration of (5.26) over \((0,t)\) yields

$$ \Gamma ^{\frac{\sigma}{1-\sigma}}(t)\geq \frac{1}{\Gamma ^{-\frac{\sigma}{1-\sigma}}(0)-\frac{\kappa \sigma t}{1-\sigma}}. $$

Consequently, the solution of problem (1.1) blows up in finite time \(T^{*}\) and \(T^{*}\leq \frac{1-\sigma}{\kappa \sigma \Gamma ^{\frac{\sigma}{1-\sigma}}(0)}\). □

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Adams, R., Fournier, J.: Sobolev Spaces. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Balakrishnan, A.V., Taylor, L.W.: Distributed parameter nonlinear damping models for flight structure, Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautral Labs WPAFB (1989)

  3. Bass, R.W., Zes, D.: Spillover nonlinearity and flexible structures. In: Taylor, L.W. (ed.) The Fourth NASA Workshop Computational Control of Flexible Aerospace Systems, NASA ConFlight Dynamic Lab and Air Force Wright Aeronautral Labs, WPAFB (1989). Conference Publication, vol. 10065, pp. 1–14 (1991)

    Google Scholar 

  4. Boudiaf, A., Drabla, S.: General decay of a nonlinear viscoelastic wave equation with boundary dissipation. Adv. Pure Appl. Math. 12(3), 20–37 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Boumaza, N., Gheraibia, B.: General decay and blowup of solutions for a degenerate viscoelastic equation of Kirchhoff type with source term. J. Math. Anal. Appl. 489(2), 124185 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Boumaza, N., Gheraibia, B.: Global existence, nonexistence, and decay of solutions for a wave equation of p-Laplacian type with weak and p-Laplacian damping, nonlinear boundary delay and source terms. Asymptot. Anal. 129(3–4), 577–592 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Boumaza, N., Saker, M., Gheraibia, B.: Asymptotic behavior for a viscoelastic Kirchhoff-type equation with delay and source terms. Acta Appl. Math. 171, 18 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Cavalcanti, M.M., Oquendo, H.P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42(4), 1310–1324 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Dai, Q.Y., Yang, Z.F.: Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 65(5), 885–903 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Datko, R.: Not all feedback stabilized hyperbolic systems are robust with respect to small time delay in their feedbacks. SIAM J. Control Optim. 26(3), 697–713 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Feng, B.: Global well-posedness and stability for a viscoelastic plate equation with a time delay. Math. Probl. Eng. 2015, 1–10 (2015)

    MathSciNet  Google Scholar 

  12. Feng, B., Kang, Y.H.: Decay rates for a viscoelastic wave equation with Balakrishnan–Taylor and frictional dampings. Topol. Methods Nonlinear Anal. 54, 321–343 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Georgiev, V., Todorova, G.: Existence of solutions of the wave equation with nonlinear damping and source terms. J. Differ. Equ. 109(2), 295–308 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Gheraibia, B., Boumaza, N.: General decay result of solutions for viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term. Z. Angew. Math. Phys. 71, 198 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Ha, T.G.: General decay rate estimates for viscoelastic wave equation with Balakrishnan-Taylor damping. Z. Angew. Math. Phys. 67, 32 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Hao, J.H., Wang, F.: General decay rate for weak viscoelastic wave equation with Balakrishnan-Taylor damping and time-varying delay. Comput. Math. Appl. 334, 168–173 (2018)

    Google Scholar 

  17. Kafini, M., Messaoudi, S.A.: A blow-up result in a nonlinear wave equation with delay. Mediterr. J. Math. 13(1), 237–247 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Kafini, M., Messaoudi, S.A., Nicaise, S.: A blow-up result in a nonlinear abstract evolution system with delay. Nonlinear Differ. Equ. Appl. 23(2), 13 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Kamache, H., Boumaza, N., Gheraibia, B.: General decay and blow up of solutions for the Kirchhoff plate equation with dynamic boundary conditions, delay and source terms. Z. Angew. Math. Phys. 73(2), 76 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Kamache, H., Boumaza, N., Gheraibia, B.: Global existence, asymptotic behavior and blow up of solutions for a Kirchhoff-type equation with nonlinear boundary delay and source terms. Turk. J. Math. 47(4), 1350–1361 (2023)

    MathSciNet  MATH  Google Scholar 

  21. Kang, J.-R.: Global nonexistence of solutions for viscoelastic wave equation with delay. Math. Methods Appl. Sci. 41(16), 1–8 (2018)

    MathSciNet  Google Scholar 

  22. Kang, Y.H., Lee, M.J., Park, J.Y.: Asymptotic stability of a viscoelastic problem with Balakrishnan-Taylor damping and time-varying delay. Comput. Math. Appl. 74, 1506–1515 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Kirane, M., Said-Houari, B.: Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62, 1065–1082 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Kirchhoff, G.: Vorlesungen über Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  25. Lee, M.J., Park, J.Y., Kang, Y.H.: Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay. Comput. Math. Appl. 70, 478–487 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Li, H.: Uniform stability of a strong time-delayed viscoelastic system with Balakrishnan–Taylor damping. Bound. Value Probl. 2023, 60 (2023)

    MathSciNet  MATH  Google Scholar 

  27. Liu, G.W., Zhang, H.W.: Well-posedness for a class of wave equation with past history and a delay. Z. Angew. Math. Phys. 67(1), 1–14 (2016)

    MathSciNet  Google Scholar 

  28. Mahdi, F.Z., Ferhat, M., Hakem, A.: Blow up and asymptotic behavior for a system of viscoelastic wave equations of Kirchhoff type with a delay term. Adv. Theory Nonlinear Anal. Appl. 2, 146–167 (2018)

    MATH  Google Scholar 

  29. Messaoudi, S.A.: Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. J. Math. Anal. Appl. 320, 902–915 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. 69, 2589–2598 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Messaoudi, S.A., Al-Khulaifi, W.: General and optimal decay for a viscoelastic equation with boundary feedback. Topol. Methods Nonlinear Anal. 51(2), 413–427 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Mu, C.L., Ma, J.: On a system of nonlinear wave equations with Balakrishnan-Taylor damping. Z. Angew. Math. Phys. 65, 91–113 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561–1585 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Nicaise, S., Pignotti, C.: Interior feedback stabilization of wave equations with time dependence delay. Electron. J. Differ. Equ. 41, 1 (2011)

    MATH  Google Scholar 

  35. Ono, K.: Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Differ. Equ. 137, 273–301 (1997)

    MathSciNet  MATH  Google Scholar 

  36. Park, S.H.: Decay rate estimates for a weak viscoelastic beam equation with timevarying delay. Appl. Math. Lett. 31, 46–51 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Saker, M., Boumaza, N., Gheraibia, B.: Dynamics properties for a viscoelastic Kirchhoff-type equation with nonlinear boundary damping and source terms. Bound. Value Probl. 2023, 58 (2023)

    MathSciNet  MATH  Google Scholar 

  38. Song, H.: Global nonexistence of positive initial energy solutions for a viscoelastic wave equation. Nonlinear Anal. 125, 260–269 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Tatar, N.-e., Zarai, A.: Exponential stability and blow up for a problem with Balakrishnan-Taylor damping. Demonstr. Math. 44(1), 67–90 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Wu, S.: Blow-up of solution for a viscoelastic wave equation with delay. Acta Math. Sci. 39, 329–338 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Wu, S.T., Tsai, L.Y.: Blow-up of solutions for some non-linear wave equations of Kirchhoff type with some dissipation. Nonlinear Anal., Theory Methods Appl. 65(2), 243–264 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Yang, Z., Gong, Z.: Blow-up of solutions for viscoelastic equations of Kirchhoff type with arbitrary positive initial energy. Electron. J. Differ. Equ. 332, 1 (2016)

    MathSciNet  MATH  Google Scholar 

  43. You, Y.: Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping. Abstr. Appl. Anal. 1(1), 83–102 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Zarai, A., Tatar, N.-e.: Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping. Arch. Math. 46, 157–176 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Directorate-General for Scientific Research and Technological Development, Algeria (DGRSDT).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to Billel Gheraibia.

Ethics declarations

Ethics approval and consent to participate

The conducted research is not related to either human or animal use.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheraibia, B., Boumaza, N. Initial boundary value problem for a viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term: decay estimates and blow-up result. Bound Value Probl 2023, 93 (2023). https://doi.org/10.1186/s13661-023-01781-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-023-01781-8

Keywords