- Research
- Open access
- Published:
Existence and uniqueness of solutions for multi-order fractional differential equations with integral boundary conditions
Boundary Value Problems volume 2024, Article number: 5 (2024)
Abstract
In this paper, we consider the existence and uniqueness of solutions for the following nonlinear multi-order fractional differential equation with integral boundary conditions
where \(0<\delta _{1}<\delta _{2}<\cdots <\delta _{q}<1<\gamma _{1}<\gamma _{2}<\cdots <\gamma _{p}<2<\beta _{1}<\beta _{2}<\cdots <\beta _{n}<3<\alpha _{1}<\alpha _{2}<\cdots <\alpha _{m}<\alpha <4\) and \(\eta _{1}+2(1-\eta _{2})\neq 0\). Using a fixed point theorem and Banach contractive mapping principle, we obtain some existence and uniqueness results.
1 Introduction
Boundary value problems (BVPs) for ordinary or partial differential equations have received wide attention due to their importance in engineering, physics, material mechanics, and chemotaxis mechanisms; see, for example, [1–6] and the references therein.
Since fractional-order models are more accurate than integer-order models, fractional differential equations, which have profound physical backgrounds and rich theoretical connotations, have attracted much attention. Recently, many scholars have studied the properties of solutions to some BVPs of fractional differential equations using the Banach contraction mapping principle, Leray-Schauder nonlinear alternative, Guo-Krasnoselskii fixed point theorem, monotone iterative technique, and so on [7–16].
As stated in [17], BVPs with integral boundary conditions have various applications in applied fields, such as blood flow problems, chemical engineering, thermo-elasticity, underground water flow, and population dynamics. Recent results on BVPs of fractional differential equations with integral boundary conditions can be seen in [17–22]. However, it is necessary to point out that all the equations in the papers mentioned above only include a single fractional derivative.
In 2014, Choudhary and Daftardar-Gejji [23] discussed the antiperiodic BVP of nonlinear multi-order fractional differential equation
where \(\lambda _{i}\in \mathbb{R}\), \(i=0,1,\ldots ,n\), \(\lambda _{n}\neq 0\), \(0\leq \alpha _{0}<\alpha _{1}<\cdots <\alpha _{n}<1\). They proved the existence and uniqueness of solutions to the BVP (1.1) in terms of the two-parametric functions of the Mittag-Leffler type. It is worth mentioning that the equation in (1.1) is a generalization of the classical relaxation equation and governs some fractional relaxation processes.
In 2020, Choi et al. [24] investigated the existence and uniqueness of solutions to the BVP of nonlinear multi-order fractional differential equation
where \(1<\alpha _{1}<\alpha _{2}<\cdots <\alpha _{n}<\alpha \leq 2\), \(0<\beta _{1}<\beta _{2}<\cdots <\beta _{m}<1\), \(0<\mu <1\), \(\lambda _{i}\in C[0,1]\) (\(i=1, 2, \ldots , n\)), \(\mu _{i}\in C[0,1]\) (\(i=1, 2, \ldots , m\)), \(\sigma \in C[0,1]\).
Motivated by the aforementioned works, in this paper, we consider the existence and uniqueness of solutions to the following BVP of nonlinear multi-order fractional differential equation with integral boundary conditions
Throughout this paper, we always assume that \(0<\delta _{1}<\delta _{2}<\cdots <\delta _{q}<1<\gamma _{1}<\gamma _{2}< \cdots <\gamma _{p}<2<\beta _{1}<\beta _{2}<\cdots <\beta _{n}<3< \alpha _{1}<\alpha _{2}<\cdots <\alpha _{m}<\alpha <4\), \(\eta _{1}+2(1-\eta _{2})\neq 0\), \(\lambda _{i}, \mu _{j}, \xi _{k}, \omega _{l}, \sigma :[0,1] \rightarrow \mathbb{R}\) and \(f:[0,1]\times \mathbb{R}\rightarrow \mathbb{R}\) are continuous.
Remark 1
If we let \(\lambda _{i}(t)=\mu _{j}(t)=\xi _{k}(t)=\omega _{l}(t)=\sigma (t)=0 \) for \(t\in [0,1]\) and \(\eta _{1}=\eta _{2}=\eta \) in (1.2), then the BVP (1.2) is reduced to the model in [20].
Remark 2
This paper is motivated greatly by [24]. Compared with [24], the existence results in this paper are established under new and simpler conditions, indicating that our works are not a trivial generalization of [24].
The main tools used in this paper are the following theorems.
Theorem 1
(see [25])
Let X be a Banach space. Assume that Ω is an open bounded subset of X with \(\theta \in \Omega \), and let \(T:\bar{\Omega}\rightarrow X\) be a compact operator such that
Then T has a fixed point in Ω̄.
Theorem 2
(see [26])
Let \((X,d)\) be a complete metric space and \(T:X\rightarrow X\) be contractive. Then T has a unique fixed point in X.
2 Preliminaries
First of all, for the reader’s convenience, we mainly introduce some definitions and lemmas of the Riemann-Liouville fractional integrals and fractional derivatives and the Caputo fractional derivatives on a finite interval of the real line. For details, one can refer to [27, 28].
In this section, we always assume that \(\mathbb{N}=\{1, 2, 3,\ldots \}\), \(\mu >0\) and \([\mu ]\) denotes the integer part of μ.
Definition 1
(see [27])
The Riemann-Liouville fractional integrals \(I_{0+}^{\mu}u\) and \(I_{1-}^{\mu}u\) of order μ on \([0,1]\) are defined by
and
respectively, where
Definition 2
(see [27])
The Riemann-Liouville fractional derivatives \(D_{0+}^{\mu}u\) and \(D_{1-}^{\mu}u\) of order μ on \([0,1]\) are defined by
and
respectively, where \(n=[\mu ]+1\).
Definition 3
(see [27])
Let \(D_{0+}^{\mu}[u(s)](t)\equiv (D_{0+}^{\mu}u)(t)\) and \(D_{1-}^{\mu}[u(s)](t)\equiv (D_{1-}^{\mu}u)(t)\) be the Riemann-Liouville fractional derivatives of order μ. Then the Caputo fractional derivatives \({}^{C}D_{0+}^{\mu}u\) and \({}^{C}D_{1-}^{\mu}u\) of order μ on \([0,1]\) are defined by
and
respectively, where
Lemma 1
(see [27])
Let n be given by (2.1) and \(u\in C^{n}[0,1]\). Then
where \(c_{i}\in \mathbb{R}\), \(i=0,1,\ldots ,n-1\).
Lemma 2
(see [28])
Let \(\nu >\mu \). Then the equation \(({}^{C}D_{0+}^{\mu}I_{0+}^{\nu}u)(t)=(I_{0+}^{\nu -\mu}u)(t)\), \(t\in [0,1]\) is satisfied for \(u\in C [ 0,1 ]\).
Lemma 3
(see [27])
Let n be given by (2.1). Then the following relations hold:
(1) For \(k\in \{0,1,2,\ldots ,n-1\}\), \({}^{C}D_{0+}^{\mu}t^{k}=0\);
(2) If \(\nu >n\), then \({}^{C}D_{0+}^{\mu}t^{\nu -1}=\frac{\Gamma (\nu )}{\Gamma (\nu -\mu )}t^{ \nu -\mu -1}\).
3 Results
Let \(C[0,1]\) be the Banach space of all continuous functions defined on \([0,1]\) with the norm
Lemma 4
Let \(y\in C[0,1]\) be a given function. Then the BVP
has a unique solution
where
Proof
In view of the equation in (3.1) and Lemma 1, we have
which, together with the boundary conditions in (3.1), shows that
From (3.2), we get
Therefore, it follows from (3.2) and (3.3) that the BVP (3.1) has a unique solution
□
Remark 3
Since \(G(t,s)\) defined in Lemma 4 is continuous on \([0,1]\times [0,1]\), there exists a constant \(M>0\) such that
Lemma 5
If \(y\in C[0,1]\) is a solution of the equation
then \(u(t):=\int _{0}^{1}G(t,s)y(s)\,ds\), \(t\in [0,1]\) is a solution of the BVP (1.2) in \(C^{\alpha}[0,1]\). Conversely, if \(u\in C^{\alpha}[0,1]\) is a solution of the BVP (1.2), then \(y(t):=-({}^{C}D_{0+}^{\alpha}u)(t)\), \(t\in [0,1]\) is a solution of the equation (3.5) in \(C[0,1]\), where \(G(t,s)\) is defined as in Lemma 4.
Proof
First, suppose that \(y\in C[0,1]\) is a solution of the equation (3.5). We prove that the function \(u(t)=\int _{0}^{1}G(t,s)y(s)\,ds\), \(t\in [0,1]\) is a solution of the BVP (1.2) in \(C^{\alpha}[0,1]\).
In fact, by Lemma 4, we know
and
In view of Lemma 1 and (3.6), we obtain
which, together with (3.7), implies that
So, it follows from (3.8) and Lemmas 2 and 3 that
and
Substituting (3.9)-(3.12), \(y(t)=-({}^{C}D_{0+}^{\alpha}u)(t)\) and \(\int _{0}^{1}G(t,s)y(s)\,ds=u(t)\) into (3.5), we get
which, together with (3.7), shows that \(u(t)=\int _{0}^{1}G(t,s)y(s)\,ds\), \(t\in [0,1]\) is a solution of the BVP (1.2).
Next, suppose that \(u\in C^{\alpha}[0,1]\) is a solution of the BVP (1.2), that is, \(u\in C^{\alpha}[0,1]\) satisfies the equation
and the boundary conditions
We prove that the function \(y(t)=-({}^{C}D_{0+}^{\alpha}u)(t)\), \(t\in [0,1]\) is a solution of the equation (3.5) in \(C[0,1]\).
In fact, in view of Lemma 4, we know
Furthermore, by the expression of \(G(t,s)\), we may obtain
which, together with Lemmas 2 and 3, implies that
and
Substituting (3.14)-(3.18) and \(({}^{C}D_{0+}^{\alpha}u)(t)=-y(t)\) into (3.13), we get (3.5). This indicates that \(y(t)=-({}^{C}D_{0+}^{\alpha}u)(t)\), \(t\in [0,1]\) is a solution of equation (3.5). □
Now, we define an operator \(T : C[0,1] \rightarrow C[0,1]\) by
Obviously, if y is a fixed point of T, then \(u(t)=\int _{0}^{1}G(t,s)y(s)\,ds\), \(t\in [0,1]\) is a solution of the BVP (1.2).
For convenience, in the remainder of this paper, we denote
and
Theorem 3
Assume that there exists a constant \(r>0\) such that
Then the BVP (1.2) has at least one solution.
Proof
Let \(\Omega =\{y\in C[0,1]:\|y\|< r\}\). Then, for any \(y\in \bar{\Omega}\), by (3.4), we know
On the one hand, for any \(y\in \bar{\Omega}\), in view of (3.20), we get
which shows that \(T(\bar{\Omega})\) is uniformly bounded.
On the other hand, for any \(y\in \bar{\Omega}\) and \(t_{1},t_{2}\in [0,1]\) with \(t_{1}\leq t_{2}\), we have
which, together with the fact that \(f(t,x)\) and \(G(t,s)\) are uniformly continuous on \([0,1]\times [-Mr,Mr]\) and \([0,1]\times [0,1]\), respectively, implies that \(T(\bar{\Omega})\) is equicontinuous.
Therefore, by Arzela-Ascoli theorem, we know that \(T:\bar{\Omega}\rightarrow C[0,1]\) is compact.
Moreover, for any \(y\in \partial \Omega \), in view of (3.19) and (3.21), we obtain
which shows that
So, it follows from Theorem 1 that the operator T has a fixed point \(y^{*}\in \bar{\Omega}\), and so, \(u^{*}(t)=\int _{0}^{1}G(t,s)y^{*}(s)\,ds\), \(t\in [0,1]\) is a solution of the BVP (1.2). □
Theorem 4
Assume that there exists a constant \(0< L<\frac{1-C_{2}}{M}\) such that
Then the BVP (1.2) has a unique solution.
Proof
For any \(y_{1}, y_{2}\in C[0,1]\), in view of (3.4) and (3.22), we have
and so,
which, together with \(LM+C_{2}<1\), implies that T is a contractive mapping. So, it follows from Theorem 2 that the operator T has a unique fixed point \(y^{**}\in C[0,1]\). Therefore, by Lemma 5, we know that the BVP (1.2) has a unique solution \(u^{**}(t)=\int _{0}^{1}G(t,s)y^{**}(s)\,ds\), \(t\in [0,1]\). □
Example 1
We consider the BVP
Since \(\alpha =\frac{7}{2}\), \(\eta _{1}=\frac{2}{3}\) and \(\eta _{2}=\frac{1}{2}\), we may choose \(M=\frac{8}{5\sqrt{\pi}}\), and so, in view of \(\beta _{1}=\frac{5}{2}\), \(\gamma _{1}=\frac{3}{2}\), \(\delta _{1}=\frac{1}{2}\), \(\lambda _{i}(t)=0\), \(\mu _{1}(t)=0.1\sqrt{t}\), \(\xi _{1}(t)=0.2e^{-t^{2}}\), \(\omega _{1}(t)=0.6t^{2}\) and \(\sigma (t)=\frac{\sqrt{\pi}}{16}\cos t\) for \(t\in [0,1]\), a direct computation shows that \(C_{2}=\frac{3150\pi +1408}{7875\pi}\).
Now that \(f(t,x)= (t-\frac{5\sqrt{\pi}}{16} )\sqrt{x^{2}+1} \) for \((t,x) \in [0,1]\times \mathbb{R}\), if we let \(L=\frac{5\sqrt{\pi}}{16}\), then
and
which indicates that (3.22) is satisfied.
Therefore, it follows from Theorem 4 that the BVP (3.23) has a unique solution.
Data availability
Not applicable.
References
Il’in, V.A., Moiseev, E.I.: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differ. Equ. 23(7), 803–810 (1987)
Il’in, V.A., Moiseev, E.I.: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator. Differ. Equ. 23(8), 979–987 (1987)
Gupta, C.P.: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl. 168, 540–551 (1992)
Columbu, A., Frassu, S., Viglialoro, G.: Refined criteria toward boundedness in an attraction-repulsion chemotaxis system with nonlinear productions. Appl. Anal. (2023). https://doi.org/10.1080/00036811.2023.2187789
Li, T., Frassu, S., Viglialoro, G.: Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption. Z. Angew. Math. Phys. 74(3), 109 (2023)
Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 70(3), 86 (2019)
Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006, 36 (2006)
Agarwal, R.P., Benchohra, M., Hamani, S.: Boundary value problems for fractional differential equations. Georgian Math. J. 16(3), 401–411 (2009)
Mcrae, F.A.: Monotone method for periodic boundary value problems of Caputo fractional differential equations. Commun. Appl. Anal. 14(1), 73–80 (2010)
Hu, C., Liu, B., Xie, S.: Monotone iterative solutions for nonlinear boundary value problems of fractional differential equation with deviating arguments. Appl. Math. Comput. 222, 72–81 (2013)
Yue, J.-R., Sun, J.-P., Zhang, S.: Existence of positive solution for BVP of nonlinear fractional differential equation. Discrete Dyn. Nat. Soc. 2015, 736108 (2015)
Guezane-Lakoud, A., Khaldi, R.: Existence results for a fractional boundary value problem with fractional Lidstone conditions. J. Appl. Math. Comput. 49(1–2), 261–268 (2015)
Cui, Y., Sun, Q., Su, X.: Monotone iterative technique for nonlinear boundary value problems of fractional order \(p\in (2,3]\). Adv. Differ. Equ. 2017, 248 (2017)
Su, C.-M., Sun, J.-P., Zhao, Y.H.: Existence and uniqueness of solutions for BVP of nonlinear fractional differential equation. Int. J. Differ. Equ. 2017, 468358 (2017)
Cui, Y., Ma, W., Sun, Q., Su, X.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal., Model. Control 23(1), 31–39 (2018)
Yue, Z., Zou, Y.: New uniqueness results for fractional differential equation with dependence on the first order derivative. Adv. Differ. Equ. 2019, 38 (2019)
Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389(1), 403–411 (2012)
Cabada, A., Hamdi, Z.: Nonlinear fractional differential equations with integral boundary value conditions. Appl. Math. Comput. 228, 251–257 (2014)
Zhang, X., Wang, L., Sun, Q.: Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter. Appl. Math. Comput. 226, 708–718 (2014)
He, Y.: Existence and multiplicity of positive solutions for singular fractional differential equations with integral boundary value conditions. Adv. Differ. Equ. 2016, 31 (2016)
Qi, T., Liu, Y., Zou, Y.: Existence result for a class of coupled fractional differential systems with integral boundary value conditions. J. Nonlinear Sci. Appl. 10(7), 4034–4045 (2017)
Li, M., Sun, J.-P., Zhao, Y.-H.: Positive solutions for BVP of fractional differential equation with integral boundary conditions. Discrete Dyn. Nat. Soc. 2020, 6738379 (2020).
Choudhary, S., Daftardar-Gejji, V.: Nonlinear multi-order fractional differential equations with periodic/anti-periodic boundary conditions. Fract. Calc. Appl. Anal. 17(2), 333–347 (2014)
Choi, H.C., Sin, Y.S., Jong, K.S.: Existence results for nonlinear multiorder fractional differential equations with integral and antiperiodic boundary conditions. J. Appl. Math. 2020, 1212040 (2020)
Sun, J.: Nonlinear Functional Analysis and Its Application. Science Press, Beijing (2008)
Granas, A., Dugundji, J.: Fixed Point Theory. Springer Monographs in Mathematics. Springer, New York (2003)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, New York (1993)
Funding
This work is supported by the National Natural Science Foundation of China (Grant 12361039).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Sun, JP., Fang, L., Zhao, YH. et al. Existence and uniqueness of solutions for multi-order fractional differential equations with integral boundary conditions. Bound Value Probl 2024, 5 (2024). https://doi.org/10.1186/s13661-023-01804-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-023-01804-4