In this section, we first obtain an identity by using tempered fractional integrals. Then, using this identity, we obtain new Milne-type inequalities with the help of tempered fractional integrals.
Lemma 1
Let us consider that \(\mathfrak{F}:[\eta,\mu ]\rightarrow \mathbb{R} \) is an absolutely continuous function \((\eta,\mu )\) such that \(\mathfrak{F}^{\prime }\in L_{1} [ \eta,\mu ] \). Then, the following equality holds:
$$\begin{aligned} & \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2\mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr]\\ &\qquad{} - \frac{\Gamma ( \alpha ) }{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl[ \mathcal{J}_{\mu -}^{ ( \alpha,\lambda ) }\mathfrak{F} ( \eta ) +\mathcal{J}_{\eta +}^{ ( \alpha,\lambda ) }\mathfrak{F} ( \mu ) \bigr] \\ &\quad = \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) }\underset{i=1}{\overset{4}{\sum }}I_{i}. \end{aligned}$$
(2.1)
Here,
$$ \textstyle\begin{cases} I_{1}=\int _{0}^{\frac{1}{4}}\curlyvee _{\lambda ( \mu - \eta ) } ( \alpha,\delta ) [ \mathfrak{F}^{ \prime } ( \delta \mu + ( 1-\delta ) \eta ) - \mathfrak{F}^{\prime } ( \delta \eta + ( 1-\delta ) \mu ) ] \,d\delta, \\ I_{2}=\int _{\frac{1}{4}}^{\frac{1}{2}} \{ \curlyvee _{ \lambda ( \mu -\eta ) } ( \alpha,\delta ) - \frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \} [ \mathfrak{F}^{\prime } ( \delta \mu + ( 1-\delta ) \eta ) -\mathfrak{F}^{\prime } ( \delta \eta + ( 1-\delta ) \mu ) ] \,d\delta, \\ I_{3}=\int _{\frac{1}{2}}^{\frac{3}{4}} \{ \curlyvee _{ \lambda ( \mu -\eta ) } ( \alpha,\delta ) - \frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \} [ \mathfrak{F}^{\prime } ( \delta \mu + ( 1-\delta ) \eta ) -\mathfrak{F}^{\prime } ( \delta \eta + ( 1-\delta ) \mu ) ] \,d\delta, \\ I_{4}=\int _{\frac{3}{4}}^{1} \{ \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) - \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \} [ \mathfrak{F}^{\prime } ( \delta \mu + ( 1-\delta ) \eta ) -\mathfrak{F}^{\prime } ( \delta \eta + ( 1-\delta ) \mu ) ] \,d\delta.\end{cases} $$
Proof
Using integration by parts, we get
$$\begin{aligned} I_{1}={}& \int _{0}^{\frac{1}{4}}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) \bigl[ \mathfrak{F}^{\prime } \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) -\mathfrak{F}^{\prime } \bigl( \delta \eta + ( 1- \delta ) \mu \bigr) \bigr] \,d\delta \\ ={}&\frac{1}{\mu -\eta }\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \bigl[ \mathfrak{F} \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) +\mathfrak{F} \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr] \vert _{0}^{\frac{1}{4}} \\ &{}-\frac{1}{\mu -\eta } \int _{0}^{\frac{1}{4}}\delta ^{ \alpha -1}e^{-\lambda ( \mu -\eta ) \delta } \bigl[ \mathfrak{F} \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) +\mathfrak{F} \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr] \,d\delta \\ ={}&\frac{1}{\mu -\eta }\curlyvee _{\lambda ( \mu -\eta ) } \biggl( \alpha, \frac{1}{4} \biggr) \biggl[ \mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) +\mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &{}-\frac{1}{\mu -\eta } \int _{0}^{\frac{1}{4}}\delta ^{ \alpha -1}e^{-\lambda ( \mu -\eta ) \delta } \bigl[ \mathfrak{F} \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) +\mathfrak{F} \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr] \,d\delta. \end{aligned}$$
(2.2)
Then, arguing similarly as above, we readily obtain
$$\begin{aligned} I_{2}={}&\frac{2}{\mu -\eta } \biggl\{ \curlyvee _{\lambda ( \mu - \eta ) } \biggl( \alpha,\frac{1}{2} \biggr) -\frac{2}{3} \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\} \mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) \end{aligned}$$
(2.3)
$$\begin{aligned} &{}-\frac{1}{\mu -\eta } \biggl\{ \curlyvee _{\lambda ( \mu -\eta ) } \biggl( \alpha, \frac{1}{4} \biggr) -\frac{2}{3} \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\} \biggl[ \mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) +\mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &{}-\frac{1}{\mu -\eta } \int _{\frac{1}{4}}^{\frac{1}{2}} \delta ^{\alpha -1}e^{-\lambda ( \mu -\eta ) \delta } \bigl[ \mathfrak{F} \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) + \mathfrak{F} \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr] \,d\delta, \\ I_{3}={}&\frac{1}{\mu -\eta } \biggl\{ \curlyvee _{\lambda ( \mu - \eta ) } \biggl( \alpha,\frac{3}{4} \biggr) -\frac{1}{3} \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\} \biggl[ \mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) +\mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &{}-\frac{2}{\mu -\eta } \biggl\{ \curlyvee _{\lambda ( \mu -\eta ) } \biggl( \alpha, \frac{1}{2} \biggr) -\frac{1}{3} \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\} \mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) \\ &{}-\frac{1}{\mu -\eta } \int _{\frac{1}{2}}^{\frac{3}{4}} \delta ^{\alpha -1}e^{-\lambda ( \mu -\eta ) \delta } \bigl[ \mathfrak{F} \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) + \mathfrak{F} \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr] \,d\delta, \end{aligned}$$
(2.4)
and
$$\begin{aligned} I_{4} ={}&{-}\frac{1}{\mu -\eta } \biggl\{ \curlyvee _{\lambda ( \mu -\eta ) } \biggl( \alpha,\frac{3}{4} \biggr) -\curlyvee _{ \lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\} \biggl[ \mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) + \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ & {}-\frac{1}{\mu -\eta } \int _{\frac{3}{4}}^{1}\delta ^{ \alpha -1}e^{-\lambda ( \mu -\eta ) \delta } \bigl[ \mathfrak{F} \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) +\mathfrak{F} \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr] \,d\delta. \end{aligned}$$
(2.5)
If we add equations (2.2) to (2.5), then we have
$$\begin{aligned} \underset{i=1}{\overset{4}{\sum }}I_{i} ={}& \frac{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) }{3 ( \mu -\eta ) ^{\alpha +1}} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2\mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &{} -\frac{1}{\mu -\eta } \int _{0}^{1}\delta ^{\alpha -1}e^{- \lambda ( \mu -\eta ) \delta } \bigl[ \mathfrak{F} \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) +\mathfrak{F} \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr] \,d \delta. \end{aligned}$$
(2.6)
With the help of the change of the variable \(\kappa =\delta \mu + ( 1-\delta ) \eta \) and \(\kappa =\delta \eta + ( 1-\delta ) \mu \) for \(\delta \in [ 0,1 ] \), respectively, equality (2.6) can be rewritten as follows:
$$\begin{aligned} \underset{i=1}{\overset{4}{\sum }}I_{i} ={}& \frac{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) }{3 ( \mu -\eta ) ^{\alpha +1}} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2\mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &{} - \frac{\Gamma ( \alpha ) }{ ( \mu -\eta ) ^{\alpha +1}} \bigl[ \mathcal{J}_{\mu -}^{ ( \alpha,\lambda ) }\mathfrak{F} ( \eta ) +\mathcal{J}_{\eta +}^{ ( \alpha,\lambda ) }\mathfrak{F} ( \mu ) \bigr]. \end{aligned}$$
(2.7)
Multiplying both sides of (2.7) by \(\frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) }\), the equality (2.1) is obtained. □
Theorem 4
If the assumptions of Lemma 1hold and the function \(\vert \mathfrak{F}^{\prime } \vert \) is convex on \([ \eta,\mu ]\), then we have the following corrected Euler–Maclaurin-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &\qquad{}- \frac{\Gamma ( \alpha ) }{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl[ \mathcal{J}_{\mu -}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \eta ) +\mathcal{J}_{\eta +}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad \leq \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl( \Omega _{1} ( \alpha,\lambda ) + \Omega _{2} ( \alpha,\lambda ) +\Omega _{3} ( \alpha, \lambda ) +\Omega _{4} ( \alpha,\lambda ) \bigr) \bigl[ \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert + \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert \bigr]. \end{aligned}$$
(2.8)
Here,
$$ \textstyle\begin{cases} \Omega _{1} ( \alpha,\lambda ) =\int _{0}^{ \frac{1}{4}} \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \vert \,d\delta, \\ \Omega _{2} ( \alpha,\lambda ) =\int _{ \frac{1}{4}}^{\frac{1}{2}} \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \vert \,d \delta, \\ \Omega _{3} ( \alpha,\lambda ) =\int _{ \frac{1}{2}}^{\frac{3}{4}} \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \vert \,d \delta, \\ \Omega _{4} ( \alpha,\lambda ) =\int _{ \frac{3}{4}}^{1} \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\curlyvee _{\lambda ( \mu - \eta ) } ( \alpha,1 ) \vert \,d\delta.\end{cases} $$
Proof
Let us take the modulus in Lemma 1. Then, we reality have
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr]\\ &\qquad{} - \frac{\Gamma ( \alpha ) }{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl[ \mathcal{J}_{\mu -}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \eta ) +\mathcal{J}_{\eta +}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad\leq \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \biggl[ \int _{0}^{\frac{1}{4}} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \bigr\vert \bigl\vert \mathfrak{F}^{ \prime } \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) - \mathfrak{F}^{\prime } \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr\vert \,d\delta \\ &\qquad{}+ \int _{\frac{1}{4}}^{\frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) -\mathfrak{F}^{ \prime } \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr\vert \,d\delta \\ &\qquad{}+ \int _{\frac{1}{2}}^{\frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) -\mathfrak{F}^{ \prime } \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr\vert \,d\delta \\ &\qquad{}+ \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert \bigl\vert \mathfrak{F}^{ \prime } \bigl( \delta \mu + ( 1- \delta ) \eta \bigr) - \mathfrak{F}^{\prime } \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr\vert \,d\delta \biggr]. \end{aligned}$$
(2.9)
It is assumed that \(\vert \mathfrak{F}^{\prime } \vert \) is convex. Thus,
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &\qquad{}- \frac{\Gamma ( \alpha ) }{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl[ \mathcal{J}_{\mu -}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \eta ) +\mathcal{J}_{\eta +}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad\leq \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \biggl[ \int _{0}^{\frac{1}{4}} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \bigr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert + ( 1- \delta ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert \\ &\qquad{}+\delta \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert + ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert \bigr] \,d\delta \\ &\qquad{}+ \int _{\frac{1}{4}}^{\frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{ \prime } ( \mu ) \bigr\vert + ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert \\ &\qquad{}+ \delta \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert + ( 1-\delta ) \bigl\vert \mathfrak{F}^{ \prime } ( \mu ) \bigr\vert \bigr] \,d\delta \\ &\qquad{}+ \int _{\frac{1}{2}}^{\frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{ \prime } ( \mu ) \bigr\vert + ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert \\ &\qquad{}+ \delta \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert + ( 1-\delta ) \bigl\vert \mathfrak{F}^{ \prime } ( \mu ) \bigr\vert \bigr] \,d\delta \\ &\qquad{}+ \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert + ( 1- \delta ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert \\ &\qquad{}+\delta \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert + ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert \bigr] \,d\delta \biggr] \\ &\quad= \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl( \Omega _{1} ( \alpha ) +\Omega _{2} ( \alpha ) +\Omega _{3} ( \alpha ) +\Omega _{4} ( \alpha ) \bigr) \bigl[ \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert + \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert \bigr]. \end{aligned}$$
This finishes the proof of Theorem 4. □
Remark 2
Let us consider \(\lambda =0\) in Theorem 4. Then, the following Milne-type inequality holds:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] - \frac{\Gamma ( \alpha +1 ) }{2 ( \mu -\eta ) ^{\alpha }} \bigl[ J_{\mu -}^{\alpha } \mathfrak{F} ( \eta ) +J_{\eta +}^{\alpha }\mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad \leq \frac{\alpha ( \mu -\eta ) }{2} \bigl( \Omega _{1} ( \alpha,0 ) +\Omega _{2} ( \alpha,0 ) + \Omega _{3} ( \alpha,0 ) +\Omega _{4} ( \alpha,0 ) \bigr) \bigl[ \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert + \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert \bigr], \end{aligned}$$
which is given by Ali et al. [2, Theorem 1].
Remark 3
If we assign \(\lambda =0\) and \(\alpha =1\) in Theorem 4, then we get the Milne-type inequality
$$\begin{aligned} &\biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] - \frac{1}{\mu -\eta } \int _{\eta }^{\mu }\mathfrak{F} ( \delta ) \,d\delta \biggr\vert \\ &\quad \leq \frac{5 ( \mu -\eta ) }{48} \bigl[ \bigl\vert \mathfrak{F}^{ \prime } ( \eta ) \bigr\vert + \bigl\vert \mathfrak{F}^{ \prime } ( \mu ) \bigr\vert \bigr], \end{aligned}$$
which is given by Ali et al. [2, Corollary 1]. This inequality helps us find an error bound of Milne’s rule.
Theorem 5
Suppose that the assumptions of Lemma 1hold and the function \(\vert \mathfrak{F}^{\prime } \vert ^{q}\), \(q>1\) is convex on \([\eta,\mu ]\). Then, the following Milne-type inequality holds:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &\qquad{}- \frac{\Gamma ( \alpha ) }{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl[ \mathcal{J}_{\mu -}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \eta ) +\mathcal{J}_{\eta +}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad \leq \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \biggl\{ \bigl( \varphi _{1}^{p} ( \alpha,\lambda ) + \varphi _{4}^{p} ( \alpha,\lambda ) \bigr) \biggl[ \biggl( \frac{7 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+ \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}}\\ &\qquad{}+ \biggl( \frac{ \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+7 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad{} + \bigl( \varphi _{2}^{p} ( \alpha,\lambda ) + \varphi _{3}^{p} ( \alpha,\lambda ) \bigr) \biggl[ \biggl( \frac{3 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+5 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{5 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+3 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}} \biggr] \biggr\} , \end{aligned}$$
where \(\frac{1}{p}+\frac{1}{q}=1\) and
$$ \textstyle\begin{cases} \varphi _{1}^{p} ( \alpha,\lambda ) = ( \int _{0}^{\frac{1}{4}} \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \vert ^{p}\,d\delta ) ^{ \frac{1}{p}}, \\ \varphi _{2}^{p} ( \alpha,\lambda ) = ( \int _{\frac{1}{4}}^{\frac{1}{2}} \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3}\curlyvee _{ \lambda ( \mu -\eta ) } ( \alpha,1 ) \vert ^{p}\,d\delta ) ^{\frac{1}{p}}, \\ \varphi _{3}^{p} ( \alpha,\lambda ) = ( \int _{\frac{1}{2}}^{\frac{3}{4}} \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{1}{3}\curlyvee _{ \lambda ( \mu -\eta ) } ( \alpha,1 ) \vert ^{p}\,d\delta ) ^{\frac{1}{p}}, \\ \varphi _{4}^{p} ( \alpha,\lambda ) = ( \int _{\frac{3}{4}}^{1} \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\curlyvee _{\lambda ( \mu - \eta ) } ( \alpha,1 ) \vert ^{p}\,d\delta ) ^{\frac{1}{p}}.\end{cases} $$
Proof
If we apply Hölder inequality in (2.9), then
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &\qquad{}- \frac{\Gamma ( \alpha ) }{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl[ \mathcal{J}_{\mu -}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \eta ) +\mathcal{J}_{\eta +}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad \leq \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \biggl\{ \biggl( \int _{0}^{\frac{1}{4}} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \bigr\vert ^{p}\,d\delta \biggr) ^{ \frac{1}{p}} \biggl[ \biggl( \int _{0}^{\frac{1}{4}} \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}} \\ & \qquad{} + \biggl( \int _{0}^{\frac{1}{4}} \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad{}+ \biggl( \int _{\frac{1}{4}}^{\frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3} \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert ^{p}\,d\delta \biggr) ^{\frac{1}{p}} \\ &\qquad{} \times \biggl[ \biggl( \int _{\frac{1}{4}}^{ \frac{1}{2}} \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \mu + ( 1- \delta ) \eta \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{ \frac{1}{q}}+ \biggl( \int _{\frac{1}{4}}^{\frac{1}{2}} \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}} \biggr] \\ & \qquad{} + \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert ^{p}\,d\delta \biggr) ^{\frac{1}{p}} \biggl[ \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}} \\ & \qquad{} + \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \eta + ( 1- \delta ) \mu \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{ \frac{1}{q}} \biggr] + \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert ^{p}\,d\delta \biggr) ^{ \frac{1}{p}} \\ &\qquad{} \times \biggl[ \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \mu + ( 1- \delta ) \eta \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{ \frac{1}{q}}+ \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}} \biggr] \biggr\} . \end{aligned}$$
By using the convexity of \(\vert \mathfrak{F}^{\prime } \vert ^{q}\), we readily get
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &\qquad{}- \frac{\Gamma ( \alpha ) }{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl[ \mathcal{J}_{\mu -}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \eta ) +\mathcal{J}_{\eta +}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad\leq \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \biggl\{ \biggl( \int _{0}^{\frac{1}{4}} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \bigr\vert ^{p}\,d\delta \biggr) ^{ \frac{1}{p}}\\ &\qquad{}\times \biggl[ \biggl( \int _{0}^{\frac{1}{4}}\delta \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}\,d\delta \biggr) ^{ \frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{0}^{\frac{1}{4}}\delta \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}} \biggr]\\ &\qquad{} + \biggl( \int _{\frac{1}{4}}^{\frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert ^{p}\,d \delta \biggr) ^{\frac{1}{p}} \\ &\qquad{}\times \biggl[ \biggl( \int _{\frac{1}{4}}^{ \frac{1}{2}}\delta \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}}\\ &\qquad{}+ \biggl( \int _{\frac{1}{4}}^{\frac{1}{2}}\delta \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad{}+ \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert ^{p}\,d\delta \biggr) ^{\frac{1}{p}} \\ &\qquad{}\times\biggl[ \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}}\delta \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}\,d\delta \biggr) ^{ \frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \delta \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{ \prime } ( \mu ) \bigr\vert ^{q}\,d \delta \biggr) ^{ \frac{1}{q}} \biggr]\\ &\qquad{} + \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert ^{p}\,d \delta \biggr) ^{\frac{1}{p}} \\ &\qquad{}\times \biggl[ \biggl( \int _{\frac{3}{4}}^{1} \delta \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{ \prime } ( \eta ) \bigr\vert ^{q}\,d \delta \biggr) ^{ \frac{1}{q}}\\ &\qquad{}+ \biggl( \int _{\frac{3}{4}}^{1}\delta \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{ \prime } ( \mu ) \bigr\vert ^{q}\,d \delta \biggr) ^{ \frac{1}{q}} \biggr] \biggr\} \\ &\quad= \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \biggl\{ \biggl( \biggl( \int _{0}^{ \frac{1}{4}} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \bigr\vert ^{p}\,d\delta \biggr) ^{ \frac{1}{p}}\\ &\qquad{}+ \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert ^{p}\,d\delta \biggr) ^{ \frac{1}{p}} \biggr) \\ &\qquad{}\times \biggl[ \biggl( \frac{7 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+ \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{ \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+7 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad{}+ \biggl( \biggl( \int _{\frac{1}{4}}^{\frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert ^{p}\,d\delta \biggr) ^{\frac{1}{p}}\\ &\qquad{}+ \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{1}{3} \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert ^{p}\,d\delta \biggr) ^{\frac{1}{p}} \biggr) \\ &\qquad{}\times \biggl[ \biggl( \frac{3 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+5 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{5 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+3 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}} \biggr] \biggr\} , \end{aligned}$$
which completes the proof of Theorem 5. □
Remark 4
Let us consider \(\lambda =0\) in Theorem 4. Then, the following Milne-type inequality holds:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] - \frac{\Gamma ( \alpha +1 ) }{2 ( \mu -\eta ) ^{\alpha }} \bigl[ J_{\mu -}^{\alpha } \mathfrak{F} ( \eta ) +J_{\eta +}^{\alpha }\mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad \leq \frac{\alpha ( \mu -\eta ) }{2} \biggl\{ \bigl( \varphi _{1}^{p} ( \alpha,0 ) +\varphi _{4}^{p} ( \alpha,0 ) \bigr) \biggl[ \biggl( \frac{7 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+ \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}}\\ &\qquad{}+ \biggl( \frac{ \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+7 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}} \biggr] \\ & \qquad{} + \bigl( \varphi _{2}^{p} ( \alpha,0 ) + \varphi _{3}^{p} ( \alpha,0 ) \bigr) \biggl[ \biggl( \frac{3 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+5 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{5 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+3 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}} \biggr] \biggr\} , \end{aligned}$$
which is given by Ali et al. [2, Theorem 2].
Remark 5
If we choose \(\lambda =0\) and \(\alpha =1\) in Theorem 5, then we obtain the following Milne-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] - \frac{1}{\mu -\eta } \int _{\eta }^{\mu }\mathfrak{F} ( \delta ) \,d\delta \biggr\vert \\ & \quad\leq ( \mu -\eta ) \biggl[ \biggl( \frac{1}{ ( p+1 ) 4^{p+1}} \biggr) ^{\frac{1}{p}} \biggl[ \biggl( \frac{7 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+ \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{ \frac{1}{q}}+ \biggl( \frac{ \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+7 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad{} + \biggl( \frac{5^{p+1}}{12^{p+1} ( p+1 ) }- \frac{1}{6^{p+1} ( p+1 ) } \biggr) ^{\frac{1}{p}} \biggl[ \biggl( \frac{3 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+5 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}}\\ &\qquad{}+ \biggl( \frac{5 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+3 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{32} \biggr) ^{\frac{1}{q}} \biggr] \biggr], \end{aligned}$$
which is presented by Ali et al. [2, Corollary 2]. This inequality helps us find an error bound of Milne’s rule.
Theorem 6
Assume that the assumptions of Lemma 1are valid. Assume also that the function \(\vert \mathfrak{F}^{\prime } \vert ^{q}\), \(q\geq 1\) is convex on \([\eta,\mu ]\). Then, the following Milne-type inequality holds:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &\qquad{}- \frac{\Gamma ( \alpha ) }{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl[ \mathcal{J}_{\mu -}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \eta ) +\mathcal{J}_{\eta +}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad\leq \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl\{ \bigl( \Omega _{1} ( \alpha,\lambda ) \bigr) ^{1- \frac{1}{q}} \bigl[ \bigl( \Omega _{5} ( \alpha,\lambda ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}\\ &\qquad{}+ \bigl( \Omega _{1} ( \alpha,\lambda ) - \Omega _{5} ( \alpha,\lambda ) \bigr) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q} \bigr) ^{ \frac{1}{q}} \\ &\qquad{}+ \bigl( \Omega _{5} ( \alpha,\lambda ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ \bigl( \Omega _{1} ( \alpha,\lambda ) -\Omega _{5} ( \alpha,\lambda ) \bigr) \bigl\vert \mathfrak{F}^{ \prime } ( \mu ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \bigr] \\ &\qquad{}+ \bigl( \Omega _{2} ( \alpha,\lambda ) \bigr) ^{1- \frac{1}{q}} \bigl[ \bigl( \Omega _{6} ( \alpha,\lambda ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ \bigl( \Omega _{2} ( \alpha,\lambda ) -\Omega _{6} ( \alpha,\lambda ) \bigr) \bigl\vert \mathfrak{F}^{ \prime } ( \eta ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \\ &\qquad{}+ \bigl( \Omega _{6} ( \alpha,\lambda ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ \bigl( \Omega _{2} ( \alpha,\lambda ) -\Omega _{6} ( \alpha,\lambda ) \bigr) \bigl\vert \mathfrak{F}^{ \prime } ( \mu ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \bigr] \\ &\qquad{}+ \bigl( \Omega _{3} ( \alpha,\lambda ) \bigr) ^{1- \frac{1}{q}} \bigl[ \bigl( \Omega _{7} ( \alpha,\lambda ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ \bigl( \Omega _{3} ( \alpha,\lambda ) -\Omega _{7} ( \alpha,\lambda ) \bigr) \bigl\vert \mathfrak{F}^{ \prime } ( \eta ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \\ &\qquad{}+ \bigl( \Omega _{7} ( \alpha,\lambda ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ \bigl( \Omega _{3} ( \alpha,\lambda ) -\Omega _{7} ( \alpha,\lambda ) \bigr) \bigl\vert \mathfrak{F}^{ \prime } ( \mu ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \bigr] \\ &\qquad{}+ \bigl( \Omega _{4} ( \alpha,\lambda ) \bigr) ^{1- \frac{1}{q}} \bigl[ \bigl( \Omega _{8} ( \alpha,\lambda ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ \bigl( \Omega _{4} ( \alpha,\lambda ) -\Omega _{8} ( \alpha,\lambda ) \bigr) \bigl\vert \mathfrak{F}^{ \prime } ( \eta ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \\ &\qquad{}+ \bigl( \Omega _{8} ( \alpha,\lambda ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ \bigl( \Omega _{4} ( \alpha,\lambda ) - \Omega _{8} ( \alpha, \lambda ) \bigr) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q} \bigr) ^{ \frac{1}{q}} \bigr] \bigr\} . \end{aligned}$$
Here, \(\Omega _{1} ( \alpha,\lambda ) \), \(\Omega _{2} ( \alpha,\lambda ) \), \(\Omega _{3} ( \alpha,\lambda ) \), and \(\Omega _{4} ( \alpha,\lambda ) \) are defined in Theorem 4and
$$ \textstyle\begin{cases} \Omega _{5} ( \alpha,\lambda ) =\int _{0}^{ \frac{1}{4}}\delta \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \vert \,d\delta, \\ \Omega _{6} ( \alpha,\lambda ) =\int _{ \frac{1}{4}}^{\frac{1}{2}}\delta \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \vert \,d \delta, \\ \Omega _{7} ( \alpha,\lambda ) =\int _{ \frac{1}{2}}^{\frac{3}{4}}\delta \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \vert \,d \delta, \\ \Omega _{8} ( \alpha,\lambda ) =\int _{ \frac{3}{4}}^{1}\delta \vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\curlyvee _{\lambda ( \mu - \eta ) } ( \alpha,1 ) \vert \,d\delta.\end{cases} $$
Proof
Let us first apply the power-mean inequality in (2.9). Then, we get
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr]\\ &\qquad{} - \frac{\Gamma ( \alpha ) }{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl[ \mathcal{J}_{\mu -}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \eta ) +\mathcal{J}_{\eta +}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad\leq \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \biggl\{ \biggl( \int _{0}^{\frac{1}{4}} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \bigr\vert \,d\delta \biggr) ^{1-\frac{1}{q}}\\ &\qquad{}\times \biggl( \int _{0}^{\frac{1}{4}} \bigl\vert \curlyvee _{ \lambda ( \mu -\eta ) } ( \alpha,\delta ) \bigr\vert \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) \bigr\vert ^{q}\,d\delta \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{0}^{\frac{1}{4}} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) \bigr\vert \,d\delta \biggr) ^{1-\frac{1}{q}} \biggl( \int _{0}^{\frac{1}{4}} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \bigr\vert \bigl\vert \mathfrak{F}^{ \prime } \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr\vert ^{q}\,d\delta \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{\frac{1}{4}}^{\frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \,d\delta \biggr) ^{1-\frac{1}{q}} \\ &\qquad{}\times \biggl( \int _{\frac{1}{4}}^{\frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{\frac{1}{4}}^{\frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \,d\delta \biggr) ^{1-\frac{1}{q}} \\ &\qquad{}\times \biggl( \int _{\frac{1}{4}}^{\frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \,d\delta \biggr) ^{1-\frac{1}{q}} \\ &\qquad{}\times \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \mu + ( 1-\delta ) \eta \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \,d\delta \biggr) ^{1-\frac{1}{q}} \\ &\qquad{}\times \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \bigl\vert \mathfrak{F}^{\prime } \bigl( \delta \eta + ( 1-\delta ) \mu \bigr) \bigr\vert ^{q}\,d \delta \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert \,d\delta \biggr) ^{1- \frac{1}{q}} \\ &\qquad{}\times \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert \bigl\vert \mathfrak{F}^{ \prime } \bigl( \delta \mu + ( 1- \delta ) \eta \bigr) \bigr\vert ^{q}\,d\delta \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert \,d\delta \biggr) ^{1- \frac{1}{q}} \\ &\qquad{}\times \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert \bigl\vert \mathfrak{F}^{ \prime } \bigl( \delta \eta + ( 1- \delta ) \mu \bigr) \bigr\vert ^{q}\,d\delta \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
Using the fact that \(\vert \mathfrak{F}^{\prime } \vert ^{q}\) is convex, it follows that
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] \\ &\qquad{}- \frac{\Gamma ( \alpha ) }{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \bigl[ \mathcal{J}_{\mu -}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \eta ) +\mathcal{J}_{\eta +}^{ ( \alpha,\lambda ) } \mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad\leq \frac{ ( \mu -\eta ) ^{\alpha +1}}{2\curlyvee _{\lambda } ( \alpha,\mu -\eta ) } \biggl\{ \biggl( \int _{0}^{\frac{1}{4}} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) \bigr\vert \,d\delta \biggr) ^{1-\frac{1}{q}}\\ &\qquad{}\times \biggl[ \biggl( \int _{0}^{\frac{1}{4}} \bigl\vert \curlyvee _{ \lambda ( \mu -\eta ) } ( \alpha,\delta ) \bigr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q} \bigr] \,d\delta \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{0}^{\frac{1}{4}} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) \bigr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{ \prime } ( \eta ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q} \bigr] \,d\delta \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad{}+ \biggl( \int _{\frac{1}{4}}^{\frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \,d\delta \biggr) ^{1-\frac{1}{q}} \\ &\qquad{}\times \biggl[ \biggl( \int _{\frac{1}{4}}^{ \frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu - \eta ) } ( \alpha,1 ) \biggr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q} \bigr] \,d\delta \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{\frac{1}{4}}^{\frac{1}{2}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{2}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ ( 1- \delta ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q} \bigr] \,d\delta \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad{}+ \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \,d\delta \biggr) ^{1-\frac{1}{q}} \\ &\qquad{}\times \biggl[ \biggl( \int _{\frac{1}{2}}^{ \frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu - \eta ) } ( \alpha,1 ) \biggr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q} \bigr] \,d\delta \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{\frac{1}{2}}^{\frac{3}{4}} \biggl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\frac{1}{3}\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \biggr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ ( 1- \delta ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q} \bigr] \,d\delta \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad{}+ \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert \,d\delta \biggr) ^{1- \frac{1}{q}} \\ &\qquad{}\times \biggl[ \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha, \delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ ( 1- \delta ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q} \bigr] \,d\delta \biggr) ^{\frac{1}{q}} \\ &\qquad{}+ \biggl( \int _{\frac{3}{4}}^{1} \bigl\vert \curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,\delta ) -\curlyvee _{\lambda ( \mu -\eta ) } ( \alpha,1 ) \bigr\vert \bigl[ \delta \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ ( 1-\delta ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q} \bigr] \,d\delta \biggr) ^{\frac{1}{q}} \biggr] \biggr\} . \end{aligned}$$
Finally, we obtain the desired result of Theorem 6. □
Corollary 1
Consider \(\lambda =0\) in Theorem 6. Then, the following Milne-type inequality holds:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] - \frac{\Gamma ( \alpha +1 ) }{2 ( \mu -\eta ) ^{\alpha }} \bigl[ J_{\mu -}^{\alpha } \mathfrak{F} ( \eta ) +J_{\eta +}^{\alpha }\mathfrak{F} ( \mu ) \bigr] \biggr\vert \\ &\quad\leq \frac{\alpha ( \mu -\eta ) }{2} \bigl\{ \bigl( \Omega _{1} ( \alpha,0 ) \bigr) ^{1-\frac{1}{q}} \bigl[ \bigl( \Omega _{5} ( \alpha,0 ) \bigl\vert \mathfrak{F}^{ \prime } ( \mu ) \bigr\vert ^{q}+ \bigl( \Omega _{1} ( \alpha,0 ) -\Omega _{5} ( \alpha,0 ) \bigr) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \\ &\qquad{}+ \bigl( \Omega _{5} ( \alpha,0 ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ \bigl( \Omega _{1} ( \alpha,0 ) -\Omega _{5} ( \alpha,0 ) \bigr) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \bigr] \\ &\qquad{}+ \bigl( \Omega _{2} ( \alpha,0 ) \bigr) ^{1- \frac{1}{q}} \bigl[ \bigl( \Omega _{6} ( \alpha,0 ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ \bigl( \Omega _{2} ( \alpha,0 ) -\Omega _{6} ( \alpha,0 ) \bigr) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \\ &\qquad{}+ \bigl( \Omega _{6} ( \alpha,0 ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ \bigl( \Omega _{2} ( \alpha,0 ) -\Omega _{6} ( \alpha,0 ) \bigr) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \bigr] \\ &\qquad{}+ \bigl( \Omega _{3} ( \alpha,0 ) \bigr) ^{1- \frac{1}{q}} \bigl[ \bigl( \Omega _{7} ( \alpha,0 ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ \bigl( \Omega _{3} ( \alpha,0 ) -\Omega _{7} ( \alpha,0 ) \bigr) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \\ &\qquad{}+ \bigl( \Omega _{7} ( \alpha,0 ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ \bigl( \Omega _{3} ( \alpha,0 ) -\Omega _{7} ( \alpha,0 ) \bigr) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \bigr] \\ &\qquad{}+ \bigl( \Omega _{4} ( \alpha,0 ) \bigr) ^{1- \frac{1}{q}} \bigl[ \bigl( \Omega _{8} ( \alpha,0 ) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q}+ \bigl( \Omega _{4} ( \alpha,0 ) -\Omega _{8} ( \alpha,0 ) \bigr) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \\ &\qquad{}+ \bigl( \Omega _{8} ( \alpha,0 ) \bigl\vert \mathfrak{F}^{\prime } ( \eta ) \bigr\vert ^{q}+ \bigl( \Omega _{4} ( \alpha,0 ) -\Omega _{8} ( \alpha,0 ) \bigr) \bigl\vert \mathfrak{F}^{\prime } ( \mu ) \bigr\vert ^{q} \bigr) ^{\frac{1}{q}} \bigr] \bigr\} . \end{aligned}$$
Corollary 2
Let us consider \(\lambda =0\) and \(\alpha =1\) in Theorem 6. Then, the following Milne-type inequality holds:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ 2\mathfrak{F} \biggl( \frac{\eta +3\mu }{4} \biggr) -\mathfrak{F} \biggl( \frac{\eta +\mu }{2} \biggr) +2 \mathfrak{F} \biggl( \frac{3\eta +\mu }{4} \biggr) \biggr] - \frac{1}{\mu -\eta } \int _{\eta }^{\mu }\mathfrak{F} ( \delta ) \,d\delta \biggr\vert \\ & \quad\leq ( \mu -\eta ) \biggl\{ \frac{1}{32} \biggl[ \biggl( \frac{ \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}+5 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}}{6} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{ \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+5 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{6} \biggr) ^{\frac{1}{q}} \biggr] \\ &\qquad{} +\frac{7}{96} \biggl[ \biggl( \frac{5 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}+9 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}}{14} \biggr) ^{ \frac{1}{q}}+ \biggl( \frac{5 \vert \mathfrak{F}^{\prime } ( \eta ) \vert ^{q}+9 \vert \mathfrak{F}^{\prime } ( \mu ) \vert ^{q}}{14} \biggr) ^{\frac{1}{q}} \biggr] \biggr\} . \end{aligned}$$
This inequality helps us find an error bound of Milne’s rule.