Skip to main content

A fixed point result on an extended neutrosophic rectangular metric space with application

Abstract

In this paper, we propose the notion of extended neutrosophic rectangular metric space and prove some fixed point results under contraction mapping. Finally, as an application of the obtained results, we prove the existence and uniqueness of the Caputo fractional differential equation.

1 Introduction

The foundation of fixed point theory consists of the notion of metric spaces and the Banach contraction principle [1]. The spaciousness of metric space is attracting thousands of academics with its axiomatic interpretation see [210]. There have been numerous metric space generalisations made recently. This demonstrates the elegance, allure and growth of the idea of metric spaces. The notion of fuzzy sets was proposed by Zadeh [11]. The term “fuzzy” appears to be widely used and frequently occurring in current research on the logical and set-theoretical foundations of mathematics. We believe that the primary reason for this rapid development is simple to understand. The world we live in is full of uncertainty because, for the most part, the data that come from our findings and measurements, the ideas we utilise and the information we gather from the environment are all imprecise and ambiguous. Therefore, any formal description of the real world, or parts of it, is always merely an idealisation and an approximation of the true reality. Fuzzy sets, fuzzy orderings, fuzzy languages and so on allow us to investigate and deal with the previously specified degree of uncertainty in a strictly formal and mathematical manner. The concept of fuzzy sets has succeeded in shifting a lot of mathematical structures within its concept. Schweizer and Sklar [12] defined the notion of continuous t-norms. Kramosil and Michalek [13] introduced the notion of fuzzy metric spaces. They applied the concept of fuzziness, via continuous t-norms, to classical notions of metric and metric spaces and compared the notions thus obtained with those resulting from some other, namely probabilistic, statistical generalisations of metric spaces. Garbiec [14] provided the fuzzy interpretation of Banach contraction principle in fuzzy metric spaces. Ur-Reham et al. [15] proved some \(\alpha -\phi \)-fuzzy cone contraction results with integral type application. Fuzzy metric spaces only deal with membership functions. An intuitionistic fuzzy metric space that is used to deal with both membership and non-membership functions was established by Park [16]. Konwar [17] presented the concept of an intuitionistic fuzzy b-metric space and proved several fixed point theorems. Kirişci and Simsek [18] introduced the notion of neutrosophic metric spaces that is used to deal with membership, non-membership and naturalness. Simsek and Kirişci [19] proved some amazing fixed point results in the context of neutrosophic metric spaces. Sowndrarajan et al. [20] proved some fixed point results in the setting of neutrosophic metric spaces. Itoh [21] proved an application regarding random differential equations in Banach spaces. Mlaiki [22] coined the concept of controlled metric spaces and proved several fixed point results for contraction mappings. Sezen [23] presented the notion of controlled fuzzy metric spaces and proved various contraction mapping results. Recently, Saleem et al. [24] introduced the concept of fuzzy double controlled metric spaces. For related articles, see [25, 26, 3033]. In 2022, Uddin et al. [27] proved fixed point theorem on neutrosophic double controlled metric space. In 2022, Gunaseelan et al. [28] proposed neutrosophic rectangular triple controlled metric space and proved fixed point theorems.

In this paper, we introduce the notion of extended neutrosophic rectangular metric space and prove fixed point theorems. The main objectives of this paper are as follows:

  • Introduce the notion of extended neutrosophic rectangular metric space;

  • Prove several fixed point theorems for contraction mappings;

  • Find the existence and uniqueness solution of the fractional differential equation with boundary conditions.

2 Preliminaries

In this section, we provide some definitions that will be helpful for readers to understand the main section.

Definition 1

[16] A binary operation \(\ast \colon [0, 1]\times [0, 1]\rightarrow [0, 1]\) is called a continuous t-norm if:

  1. 1.

    \(\wp \ast \tau =\tau \ast \wp \) for all \(\wp , \tau \in [0, 1]\);

  2. 2.

    is continuous;

  3. 3.

    \(\wp \ast 1=\wp \) for all \(\wp \in [0, 1]\);

  4. 4.

    \((\wp \ast \tau )\ast \mu =\wp \ast (\tau \ast \mu )\) for all \(\wp , \tau , \mu \in [0, 1]\);

  5. 5.

    If \(\wp \leq \mu \) and \(\tau \leq \mathfrak{d}\) with \(\wp , \tau , \mu , \mathfrak{d}\in [0, 1]\), then \(\wp \ast \tau \leq \mu \ast \mathfrak{d}\).

Definition 2

[16] A binary operation \(\circ \colon [0, 1]\times [0, 1]\rightarrow [0, 1]\) is called a continuous t-co-norm if:

  1. 1.

    \(\wp \circ \tau =\tau \circ \wp \) for all \(\wp , \tau \in [0, 1]\);

  2. 2.

    is continuous;

  3. 3.

    \(\wp \circ 0=0\) for all \(\wp \in [0, 1]\);

  4. 4.

    \((\wp \circ \tau )\circ \mu =\wp \circ (\tau \circ \mu )\) for all \(\wp , \tau , \mu \in [0, 1]\);

  5. 5.

    If \(\wp \leq \mu \) and \(\mu \leq \mathfrak{d}\) with \(\wp , \tau , \mu , \mathfrak{d}\in [0, 1]\), then \(\wp \circ \tau \leq \mu \circ \mathfrak{d}\).

Definition 3

[28] Let \(\varDelta \neq \emptyset \) and \(\wp , \Gamma ,\eta \colon \varDelta \times \varDelta \rightarrow [1, + \infty )\) be given non-comparable functions, be a continuous t-norm, be a continuous t-co-norm and Ω, Φ, Λ be neutrosophic sets. \(\varDelta \times \varDelta \times (0, +\infty )\) is said to be a neutrosophic rectangular triple controlled metric on Δ if for any \(\psi , \lambda \in \varDelta \) and all distinct \(\upsilon , \varGamma \in \varDelta \backslash \{\psi ,\lambda \}\), the following conditions are satisfied:

  1. 1.

    \(\varOmega (\psi , \varGamma , \vartheta )+\varPhi (\psi , \varGamma , \vartheta )+\varLambda (\psi , \varGamma , \vartheta )\leq 3\);

  2. 2.

    \(\varOmega (\psi , \varGamma , \vartheta )>0\);

  3. 3.

    \(\varOmega (\psi , \varGamma , \vartheta )=1\) for all \(\vartheta >0\) if and only if \(\psi =\varGamma \);

  4. 4.

    \(\varOmega (\psi , \varGamma , \vartheta )=\varOmega (\varGamma , \psi , \vartheta )\);

  5. 5.

    \(\varOmega (\psi , \lambda , \vartheta +\varpi +\varsigma )\geq \varOmega (\psi , \varGamma , \frac{\vartheta}{\wp (\psi , \varGamma )} )\ast \varOmega ( \varGamma , \upsilon , \frac{\varpi}{\Gamma (\varGamma , \upsilon )} )\ast \varOmega (\upsilon , \lambda , \frac{\varsigma}{\eta (\upsilon , \lambda )} )\);

  6. 6.

    \(\varOmega (\psi , \varGamma , \cdot )\colon (0, +\infty ) \rightarrow [0, 1]\) is continuous and \(\lim_{\vartheta \rightarrow +\infty}\varOmega (\psi , \varGamma , \vartheta )=1\);

  7. 7.

    \(\varPhi (\psi , \varGamma , \vartheta )<1\);

  8. 8.

    \(\varPhi (\psi , \varGamma , \vartheta )=0\) for all \(\vartheta >0\) if and only if \(\psi =\varGamma \);

  9. 9.

    \(\varPhi (\psi , \varGamma , \vartheta )=\varPhi (\varGamma , \psi , \vartheta )\);

  10. 10.

    \(\varPhi (\psi , \lambda , \vartheta +\varpi +\varsigma )\leq \varPhi (\psi , \varGamma , \frac{\vartheta}{\wp (\psi , \varGamma )} )\circ \varPhi ( \varGamma , \upsilon , \frac{\varpi}{\Gamma (\varGamma , \upsilon )} )\circ \varPhi (\upsilon , \lambda , \frac{\varsigma}{\eta (\upsilon , \lambda )} )\);

  11. 11.

    \(\varPhi (\psi , \varGamma , \cdot )\colon (0, +\infty )\rightarrow [0, 1]\) is continuous and \(\lim_{\vartheta \rightarrow +\infty}\varPhi (\psi , \varGamma , \vartheta )=0\);

  12. 12.

    \(\varLambda (\psi , \varGamma , \vartheta )<1\);

  13. 13.

    \(\varLambda (\psi , \varGamma , \vartheta )=0\) for all \(\vartheta >0\) if and only if \(\psi =\varGamma \);

  14. 14.

    \(\varLambda (\psi , \varGamma , \vartheta )=\varLambda (\varGamma , \psi , \vartheta )\);

  15. 15.

    \(\varLambda (\psi , \lambda , \vartheta +\varpi +\varsigma )\leq \varLambda (\psi , \varGamma , \frac{\vartheta}{\wp (\psi , \varGamma )} )\circ \varLambda (\varGamma , \upsilon , \frac{\varpi}{\Gamma (\varGamma , \upsilon )} )\circ \varLambda (\upsilon , \lambda , \frac{\varpi}{\eta (\upsilon , \lambda )} )\);

  16. 16.

    \(\varLambda (\psi , \varGamma , \cdot )\colon (0, +\infty ) \rightarrow [0, 1]\) is continuous and \(\lim_{\vartheta \rightarrow +\infty}\varLambda (\psi , \varGamma , \vartheta )=0\);

  17. 17.

    If \(\vartheta \leq 0\), then \(\varOmega (\psi , \varGamma , \vartheta )=0\), \(\varPhi (\psi , \varGamma , \vartheta )=1\) and \(\mathcal{S}(\psi , \varGamma , \vartheta )=1\).

Then \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) is called a neutrosophic rectangular triple controlled metric space.

3 Main results

In this part, we present extended neutrosophic rectangular metric space and demonstrate some fixed point results.

Definition 4

Let \(\varDelta \neq \emptyset \) and \(\wp \colon \varDelta \times \varDelta \rightarrow [1, +\infty )\) be given non-comparable functions, be a continuous t-norm, be a continuous t-co-norm and Ω, Φ, Λ be neutrosophic sets. \(\varDelta \times \varDelta \times (0, +\infty )\) is said to be an extended neutrosophic rectangular metric on Δ if for any \(\psi , \lambda \in \varDelta \) and all distinct \(\upsilon ,\varGamma , \lambda \in \varDelta \), the following conditions are satisfied:

  1. (A1)

    \(\varOmega (\psi , \varGamma , \vartheta )+\varPhi (\psi , \varGamma , \vartheta )+\varLambda (\psi , \varGamma , \vartheta )\leq 3\);

  2. (A2)

    \(\varOmega (\psi , \varGamma , \vartheta )>0\);

  3. (A3)

    \(\varOmega (\psi , \varGamma , \vartheta )=1\) for all \(\vartheta >0\) if and only if \(\psi =\varGamma \);

  4. (A4)

    \(\varOmega (\psi , \varGamma , \vartheta )=\varOmega (\varGamma , \psi , \vartheta )\);

  5. (A5)

    \(\varOmega (\psi , \lambda , \wp (\psi , \lambda )(\vartheta +\varpi + \varsigma ))\geq \varOmega (\psi , \varGamma , \vartheta ) \ast \varOmega (\varGamma , \upsilon , \varpi )\ast \varOmega (\upsilon , \lambda , \varsigma )\);

  6. (A6)

    \(\varOmega (\psi , \varGamma , \cdot )\colon (0, +\infty ) \rightarrow [0, 1]\) is continuous and \(\lim_{\vartheta \rightarrow +\infty}\varOmega (\psi , \varGamma , \vartheta )=1\);

  7. (A7)

    \(\varPhi (\psi , \varGamma , \vartheta )<1\);

  8. (A8)

    \(\varPhi (\psi , \varGamma , \vartheta )=0\) for all \(\vartheta >0\) if and only if \(\psi =\varGamma \);

  9. (A9)

    \(\varPhi (\psi , \varGamma , \vartheta )=\varPhi (\varGamma , \psi , \vartheta )\);

  10. (A10)

    \(\varPhi (\psi , \lambda , \wp (\psi , \lambda )(\vartheta +\varpi + \varsigma )\leq \varPhi (\psi , \varGamma , \vartheta )\circ \varPhi (\varGamma , \upsilon , \varpi )\circ \varPhi ( \upsilon , \lambda , \varsigma )\);

  11. (A11)

    \(\varPhi (\psi , \varGamma , \cdot )\colon (0, +\infty )\rightarrow [0, 1]\) is continuous and \(\lim_{\vartheta \rightarrow +\infty}\varPhi (\psi , \varGamma , \vartheta )=0\);

  12. (A12)

    \(\varLambda (\psi , \varGamma , \vartheta )<1\);

  13. (A13)

    \(\varLambda (\psi , \varGamma , \vartheta )=0\) for all \(\vartheta >0\) if and only if \(\psi =\varGamma \);

  14. (A14)

    \(\varLambda (\psi , \varGamma , \vartheta )=\varLambda (\varGamma , \psi , \vartheta )\);

  15. (A15)

    \(\varLambda (\psi , \lambda , \wp (\psi , \lambda )(\vartheta + \varpi +\varsigma ))\leq \varLambda (\psi , \varGamma , \vartheta )\circ \varLambda (\varGamma , \upsilon , \varpi )\circ \varLambda (\upsilon , \lambda , \varpi )\);

  16. (A16)

    \(\varLambda (\psi , \varGamma , \cdot )\colon (0, +\infty ) \rightarrow [0, 1]\) is continuous and \(\lim_{\vartheta \rightarrow +\infty}\varLambda (\psi , \varGamma , \vartheta )=0\);

  17. (A17)

    If \(\vartheta \leq 0\), then \(\varOmega (\psi , \varGamma , \vartheta )=0\), \(\varPhi (\psi , \varGamma , \vartheta )=1\) and \(\mathcal{S}(\psi , \varGamma , \vartheta )=1\).

Then \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) is called an extended neutrosophic rectangular metric space (ENRMS).

Example 1

Let \(\varDelta =\{1, 2, 3,4\}\) and \(\wp \colon \varDelta \times \varDelta \rightarrow [1, +\infty )\) be a function given by \(\wp (\psi , \varGamma )=\psi +\varGamma +1\). Define \(\varOmega , \varPhi , \varLambda \colon \varDelta \times \varDelta \times (0, +\infty )\rightarrow [0, 1]\) as

$$\begin{aligned} \varOmega (\psi , \varGamma , \vartheta )&= \textstyle\begin{cases} 1, &\text{if } \psi =\varGamma \\ \frac{\vartheta}{\vartheta +\max \{\psi , \varGamma \}^{2}}, & \text{if otherwise}, \end{cases}\displaystyle \\ \varPhi (\psi , \varGamma , \vartheta )&= \textstyle\begin{cases} 0, &\text{if } \psi =\varGamma \\ \frac{\max \{\psi , \varGamma \}^{2}}{\vartheta +\max \{\psi , \varGamma \}^{2}}, &\text{if otherwise}, \end{cases}\displaystyle \end{aligned}$$

and

$$\begin{aligned} \varLambda (\psi , \varGamma , \vartheta )= \textstyle\begin{cases} 0, &\text{if } \psi =\varGamma \\ \frac{\max \{\psi , \varGamma \}^{2}}{\vartheta}, &\text{if otherwise}. \end{cases}\displaystyle \end{aligned}$$

Then \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) is an ENRMS with continuous t-norm \(\wp \ast \tau =\wp \tau \) and continuous t-co-norm, \(\wp \circ \bar{a}=\max \{\wp , \bar{a}\}\).

Here we prove (A5), (A10) and (A15), others are obvious.

Let \(\psi =1\), \(\varGamma =2\), \(\upsilon =3\) and \(\lambda =4\). Then

$$\begin{aligned} \varOmega (1, 4, \vartheta +\varpi +\varsigma )= \frac{\vartheta +\varpi +\varsigma}{\vartheta +\varpi +\varsigma +\max \{1, 4\}^{2}}= \frac{\vartheta +\varpi +\varsigma}{\vartheta +\varpi +\varsigma +16}. \end{aligned}$$

On the other hand,

$$\begin{aligned} &\varOmega \biggl(1, 2, \frac{\vartheta}{\wp (1, 4)} \biggr)= \frac{\frac{\vartheta}{\wp (1, 4)}}{\frac{\vartheta}{\wp (1, 4)}+\max \{1, 2\}^{2}}= \frac{\frac{\vartheta}{6}}{\frac{\vartheta}{6}+4}= \frac{\vartheta}{\vartheta +24}, \\ &\varOmega \biggl(2, 3, \frac{\varpi}{\wp (1, 4)} \biggr)= \frac{\frac{\varpi}{\wp (1, 4)}}{\frac{\varpi}{\wp (1, 4)}+\max \{2, 3\}^{2}}= \frac{\frac{\varpi}{6}}{\frac{\varpi}{6}+9}=\frac{\varpi}{\varpi +54} \end{aligned}$$

and

$$\begin{aligned} \varOmega \biggl(3, 4, \frac{\varsigma}{\wp (1, 4)} \biggr)= \frac{\frac{\varsigma}{\wp (1, 4)}}{\frac{\varsigma}{\wp (1, 4)}+\max \{3, 4\}^{2}}= \frac{\frac{\varsigma}{6}}{\frac{\varsigma}{6}+16}= \frac{\varsigma}{\varsigma +96}. \end{aligned}$$

That is,

$$\begin{aligned} \frac{\vartheta +\varpi +\varsigma}{\vartheta +\varpi +\varsigma +16} \geq \frac{\vartheta}{\vartheta +24}\cdot \frac{\varpi}{\varpi +54}. \frac{\varsigma}{\varsigma +96}. \end{aligned}$$

Then it satisfies all \(\vartheta , \varpi , \varsigma >0\). Hence,

$$\begin{aligned} \varOmega (\psi , \lambda , \vartheta +\varpi +\varsigma )\geq \varOmega \biggl( \psi , \varGamma , \frac{\vartheta}{\wp (\psi , \lambda )} \biggr)\ast \varOmega \biggl( \varGamma , \upsilon , \frac{\varpi}{\wp (\psi , \lambda )} \biggr) \ast \varOmega \biggl(\upsilon , \lambda , \frac{\varsigma}{\wp (\psi , \lambda )} \biggr). \end{aligned}$$

Now,

$$\begin{aligned} \varPhi (1, 4, \vartheta +\varpi +\varsigma )= \frac{\max \{1, 4\}^{2}}{\vartheta +\varpi +\varsigma +\max \{1, 4\}^{2}}= \frac{16}{\vartheta +\varpi +\varsigma +16}. \end{aligned}$$

On the other hand,

$$\begin{aligned} &\varPhi \biggl(1, 2, \frac{\vartheta}{\wp (1, 4)} \biggr)= \frac{\max \{1, 2\}^{2}}{\frac{\vartheta}{\wp (1, 4)}+\max \{1, 2\}^{2}}= \frac{4}{\frac{\vartheta}{6}+4}=\frac{24}{\vartheta +24}, \\ &\varPhi \biggl(2, 3, \frac{\varpi}{\wp (1, 4)} \biggr)= \frac{\max \{2, 3\}^{2}}{\frac{\varpi}{\wp (1, 4)}+\max \{2, 3\}^{2}}= \frac{9}{\frac{\varpi}{6}+9}=\frac{54}{\varpi +54} \end{aligned}$$

and

$$\begin{aligned} \varPhi \biggl(3, 4, \frac{\varsigma}{\wp (1, 4)} \biggr)= \frac{\max \{3, 4\}^{2}}{\frac{\varsigma}{\wp (1, 4)}+\max \{3, 4\}^{2}}= \frac{16}{\frac{\varsigma}{6}+16}=\frac{96}{\varsigma +96}. \end{aligned}$$

That is,

$$\begin{aligned} \frac{16}{\vartheta +\varpi +\varsigma +16}\leq \max \biggl\{ \frac{24}{\vartheta +24}, \frac{54}{\varpi +54}, \frac{96}{\varsigma +96} \biggr\} . \end{aligned}$$

Then it satisfies all \(\vartheta , \varpi ,\varsigma >0\). Hence,

$$\begin{aligned} \varPhi (\psi , \lambda , \vartheta +\varpi +\varsigma )\leq \varPhi \biggl(\psi , \varGamma , \frac{\vartheta}{\wp (\psi , \lambda )} \biggr)\circ \varPhi \biggl(\upsilon , \lambda , \frac{\varpi}{\wp (\psi , \lambda )} \biggr)\circ \varPhi \biggl( \upsilon , \lambda , \frac{\varsigma}{\wp (\psi , \lambda )} \biggr). \end{aligned}$$

Now,

$$\begin{aligned} \varLambda (1, 3, \vartheta +\varpi +\varsigma )= \frac{\max \{1, 3\}^{2}}{\vartheta +\varpi +\varsigma}= \frac{9}{\vartheta +\varpi +\varsigma}. \end{aligned}$$

On the other hand,

$$\begin{aligned} &\varLambda \biggl(1, 2, \frac{\vartheta}{\wp (1, 4)} \biggr)= \frac{\max \{1, 2\}^{2}}{\frac{\vartheta}{\wp (1, 4)}}= \frac{4}{\frac{\vartheta}{6}}=\frac{24}{\vartheta}, \\ &\varLambda \biggl(2, 3, \frac{\varpi}{\wp (1, 4)} \biggr)= \frac{\max \{2, 3\}^{2}}{\frac{\varpi}{\wp (1, 4)}}= \frac{9}{\frac{\varpi}{6}}=\frac{54}{\varpi} \end{aligned}$$

and

$$\begin{aligned} \varLambda \biggl(3, 4, \frac{\varsigma}{\wp (1, 4)} \biggr)= \frac{\max \{3, 4\}^{2}}{\frac{\varsigma}{\wp (1, 4)}}= \frac{16}{\frac{\varsigma}{6}}=\frac{96}{\varsigma}. \end{aligned}$$

That is,

$$\begin{aligned} \frac{9}{\vartheta +\varpi +\varsigma}\leq \max \biggl\{ \frac{24}{\vartheta}, \frac{54}{\varpi}, \frac{96}{\varsigma} \biggr\} . \end{aligned}$$

Then it satisfies all \(\vartheta , \varpi >0\). Hence,

$$\begin{aligned} \varLambda (\psi , \lambda , \vartheta +\varpi +\varsigma )\leq \varLambda \biggl(\psi , \varGamma , \frac{\vartheta}{\wp (\psi , \lambda )} \biggr)\circ \varLambda \biggl( \varGamma , \upsilon , \frac{\varpi}{\wp (\psi , \lambda )} \biggr) \circ \varLambda \biggl(\upsilon , \lambda , \frac{\varpi}{\wp (\psi , \lambda )} \biggr). \end{aligned}$$

Hence \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) is an ENRMS.

Remark 1

The preceding example also satisfies for continuous t-norm \(\wp \ast \bar{a}=\min \{\wp , \bar{a}\}\) and continuous t-co-norm \(\wp \circ \bar{a}=\max \{\wp , \bar{a}\}\).

Definition 5

Let \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) be an ENRMS, an open ball is then defined \(\varLambda (\psi , \varrho , \vartheta )\) with centre ψ, radius \(\varrho , 0<\varrho <1\) and \(\vartheta >0\) as follows:

$$\begin{aligned} \varLambda (\psi , \varrho , \vartheta )= \bigl\{ \varGamma \in \varDelta \colon \varOmega (\psi , \varGamma , \vartheta )>1-\varrho , \varPhi ( \psi , \varGamma , \vartheta )< \varrho , \varLambda (\psi , \varGamma , \vartheta )< \varrho \bigr\} . \end{aligned}$$

Definition 6

Let \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) be an ENRMS and \(\{\psi _{\kappa}\}\) be a sequence in Δ. Then \(\{\psi _{\kappa}\}\) is said to be:

  1. 1.

    Convergent if there exists \(\psi \in \varDelta \) such that

    $$\begin{aligned} &\lim_{\kappa \rightarrow +\infty}\varOmega (\psi _{\kappa}, \psi , \vartheta )=1, \qquad \lim_{\kappa \rightarrow +\infty}\varPhi (\psi _{ \kappa}, \psi , \vartheta )=0, \\ &\lim_{\kappa \rightarrow +\infty} \varLambda (\psi _{\kappa}, \psi , \vartheta )=0\quad \text{for all } \vartheta >0; \end{aligned}$$
  2. 2.

    Cauchy sequence if and only if for each \(\bar{a}>0\), \(\vartheta >0\), there exists \(\kappa _{0}\in \mathbb{N}\) such that

    $$\begin{aligned} \varOmega (\psi _{\kappa}, \psi _{\kappa +\omega}, \vartheta )\geq 1- \bar{a}, \qquad \varPhi (\psi _{\kappa}, \psi _{\kappa +\omega}, \vartheta ) \leq \bar{a}, \qquad \varPhi (\psi _{\kappa}, \psi _{\kappa +\omega}, \vartheta )\leq \bar{a} \end{aligned}$$

    for all \(\kappa , \pi \geq \kappa _{0}\).

    If every Cauchy sequence is convergent in Δ, then \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) is called a complete ENRMS.

Lemma 1

Let \(\{\psi _{\kappa}\}\) be a Cauchy sequence in ENRMS \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) such that \(\psi _{\kappa}\neq \psi _{\pi}\) whenever \(\pi , \kappa \in \mathbb{N}\) with \(\kappa \neq \pi \). Then the sequence \(\{\psi _{\kappa}\}\) can converge to, at most, one limit point.

Proof

Contrarily, assume that \(\psi _{\kappa}\rightarrow \psi \) and \(\psi _{\kappa}\rightarrow \varGamma \) for \(\psi \neq \varGamma \). Then

$$ \lim_{\kappa \rightarrow +\infty}\varOmega (\psi _{\kappa}, \psi , \vartheta )=1,\qquad \lim_{\kappa \rightarrow +\infty}\varPhi (\psi _{ \kappa}, \psi , \vartheta )=0, \qquad \lim_{\kappa \rightarrow +\infty} \varLambda (\psi _{\kappa}, \psi , \vartheta )=0 $$

and

$$ \lim_{\kappa \rightarrow +\infty}\varOmega (\psi _{\kappa}, \varGamma , \vartheta )=1, \qquad \lim_{\kappa \rightarrow +\infty}\varPhi ( \psi _{\kappa}, \varGamma , \vartheta )=0,\qquad \lim_{\kappa \rightarrow + \infty}\varLambda (\psi _{\kappa}, \varGamma , \vartheta )=0 $$

for all \(\vartheta >0\). Suppose

$$\begin{aligned}& \varOmega (\psi , \varGamma , \vartheta )\geq \varOmega \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \varGamma )} \biggr)\ast \varOmega \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3\wp (\psi , \varGamma )} \biggr) \\& \hphantom{\varOmega (\psi , \varGamma , \vartheta )\geq} {}\ast \varOmega \biggl( \psi _{\kappa +1}, \varGamma , \frac{\vartheta}{3\wp (\psi , \varGamma )} \biggr) \\& \hphantom{\varOmega (\psi , \varGamma , \vartheta )}\rightarrow{} 1\ast 1\ast 1 \quad \text{as } \kappa \rightarrow +\infty , \\& \varPhi (\psi , \varGamma , \vartheta ) \leq \varPhi \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \varGamma )} \biggr) \circ \varPhi \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3\wp (\psi , \varGamma )} \biggr) \\& \hphantom{\varPhi (\psi , \varGamma , \vartheta ) \leq}{}\circ \varPhi \biggl( \psi _{\kappa +1}, \varGamma , \frac{\vartheta}{3\wp (\psi , \varGamma )} \biggr) \\& \hphantom{\varPhi (\psi , \varGamma , \vartheta )}\rightarrow{} 0\circ 0\circ 0\quad \text{as } \kappa \rightarrow +\infty , \\& \varLambda (\psi , \varGamma , \vartheta ) \leq \varLambda \biggl( \psi , \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \varGamma )} \biggr)\circ \varLambda \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3\wp (\psi , \varGamma )} \biggr) \\& \hphantom{\varLambda (\psi , \varGamma , \vartheta ) \leq}{}\circ \varLambda \biggl(\psi _{\kappa +1}, \varGamma , \frac{\vartheta}{3\wp (\psi , \varGamma )} \biggr) \\& \hphantom{\varLambda (\psi , \varGamma , \vartheta )}\rightarrow{} 0\circ 0\circ 0 \quad \text{as } \kappa \rightarrow +\infty . \end{aligned}$$

That is, \(\varOmega (\psi , \varGamma , \vartheta )\geq 1\ast 1\ast 1=1\), \(\varPhi (\psi , \varGamma , \vartheta )\leq 0\circ 0\circ 0=0\) and \(\varLambda (\psi , \varGamma , \vartheta )\leq 0\circ 0\circ 0=0\). Hence \(\psi =\varGamma \), that is, the sequence converges to at most one limit point. □

Lemma 2

Let \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) be an ENRMS. If for some \(0<\theta <1\) and for any \(\psi , \varGamma \in \varDelta \), \(\vartheta >0\),

$$\begin{aligned} \begin{aligned}&\varOmega (\psi , \varGamma , \vartheta )\geq \varOmega \biggl(\psi , \varGamma , \frac{\vartheta}{\theta} \biggr),\qquad \varPhi (\psi , \varGamma , \vartheta )\leq \varPhi \biggl(\psi , \varGamma , \frac{\vartheta}{\theta} \biggr), \\ & \varLambda (\psi , \varGamma , \vartheta )\leq \varLambda \biggl(\psi , \varGamma , \frac{\vartheta}{\theta} \biggr), \end{aligned} \end{aligned}$$
(1)

then \(\psi =\varGamma \).

Proof

Condition (1) implies that

$$\begin{aligned} &\varOmega (\psi , \varGamma , \vartheta )\geq \varOmega \biggl(\psi , \varGamma , \frac{\vartheta}{\theta ^{\kappa}} \biggr), \qquad \varPhi (\psi , \varGamma , \vartheta )\leq \varPhi \biggl(\psi , \varGamma , \frac{\vartheta}{\theta ^{\kappa}} \biggr), \\ & \varLambda (\psi , \varGamma , \vartheta )\leq \varLambda \biggl(\psi , \varGamma , \frac{\vartheta}{\theta ^{\kappa}} \biggr), \end{aligned}$$

\(\kappa \in \mathbb{N}\), \(\vartheta >0\).

Now, we have

$$\begin{aligned} \varOmega (\psi , \varGamma , \vartheta )&\geq \lim_{\kappa \rightarrow +\infty} \varOmega \biggl(\psi , \varGamma , \frac{\vartheta}{\theta ^{\kappa}} \biggr)=1, \\ \varPhi (\psi , \varGamma , \vartheta )&\leq \lim_{\kappa \rightarrow +\infty}\varPhi \biggl(\psi , \varGamma , \frac{\vartheta}{\theta ^{\kappa}} \biggr)=0, \\ \varLambda (\psi , \varGamma , \vartheta )&\leq \lim_{\kappa \rightarrow +\infty} \varLambda \biggl(\psi , \varGamma , \frac{\vartheta}{\theta ^{\kappa}} \biggr)=0, \quad \vartheta >0. \end{aligned}$$

Also, by Definition 4 of (A3), (A8), (A13), we obtain \(\psi =\varGamma \). □

Theorem 1

Suppose that \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) is a complete ENRMS in the company of \(\wp \colon \varDelta \times \varDelta \rightarrow [1, +\infty )\) with \(0<\theta <1\) and suppose that

$$\begin{aligned} \begin{aligned}&\lim_{\vartheta \rightarrow +\infty}\varOmega (\psi , \varGamma , \vartheta )=1,\quad \lim _{\vartheta \rightarrow +\infty}\varPhi (\psi , \varGamma , \vartheta )=0 \quad \textit{and} \\ & \lim _{\vartheta \rightarrow +\infty}\varLambda (\psi , \varGamma , \vartheta )=0 \end{aligned} \end{aligned}$$
(2)

for all \(\psi , \varGamma \in \varDelta \) and \(\vartheta >0\). Let \(\nabla \colon \varDelta \rightarrow \varDelta \) be a mapping satisfying

$$\begin{aligned} &\varOmega (\nabla \psi , \nabla \varGamma , \theta \vartheta )\geq \varOmega ( \psi , \varGamma , \vartheta ), \\ &\varPhi (\nabla \psi , \nabla \varGamma , \theta \vartheta )\leq \varPhi (\psi , \varGamma , \vartheta ) \quad \textit{and}\quad \varLambda (\nabla \psi , \nabla \varGamma , \theta \vartheta )\leq \varLambda (\psi , \varGamma , \vartheta ) \end{aligned}$$
(3)

for all \(\psi , \varGamma \in \varDelta \) and \(\vartheta >0\). Further, suppose that for arbitrary \(\psi _{0}\in \varDelta \) and \(\kappa ,\omega \in \mathbb{N}\), we have

$$\begin{aligned} \wp (\psi _{\kappa},\psi _{\kappa +\omega} )< \frac{1}{\theta}. \end{aligned}$$

Then has a unique fixed point.

Proof

Let \(\psi _{0}\in \varDelta \) and define a sequence \(\psi _{\kappa}\) by \(\psi _{\kappa}=\nabla ^{\kappa}\psi _{0}=\nabla \psi _{\kappa -1}\), \(\kappa \in \mathbb{N}\).

By utilising (2) for all \(\vartheta >0\), we obtain

$$\begin{aligned} &\varOmega (\psi _{\kappa}, \psi _{\kappa +1}, \theta \vartheta )= \varOmega (\nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \theta \vartheta )\geq \varOmega (\psi _{\kappa -1}, \psi _{\kappa}, \vartheta ) \geq \varOmega \biggl(\psi _{\kappa -2}, \psi _{\kappa -1}, \frac{\vartheta}{\theta} \biggr) \\ &\hphantom{\varOmega (\psi _{\kappa}, \psi _{\kappa +1}, \theta \vartheta )}\geq \varOmega \biggl(\psi _{\kappa -3}, \psi _{\kappa -2}, \frac{\vartheta}{\theta ^{2}} \biggr)\geq \cdots \geq \varOmega \biggl( \psi _{0}, \psi _{1}, \frac{\vartheta}{\theta ^{\kappa -1}} \biggr), \\ &\varPhi (\psi _{\kappa}, \psi _{\kappa +1}, \theta \vartheta )= \varPhi (\nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \theta \vartheta )\leq \varPhi (\psi _{\kappa -1}, \psi _{\kappa}, \vartheta )\leq \varPhi \biggl( \psi _{\kappa -2}, \psi _{\kappa -1}, \frac{\vartheta}{\theta} \biggr) \\ &\hphantom{\varPhi (\psi _{\kappa}, \psi _{\kappa +1}, \theta \vartheta )}\leq \varPhi \biggl(\psi _{\kappa -3}, \psi _{\kappa -2}, \frac{\vartheta}{\theta ^{2}} \biggr)\leq \cdots \leq \varPhi \biggl( \psi _{0}, \psi _{1}, \frac{\vartheta}{\theta ^{\kappa -1}} \biggr) \end{aligned}$$

and

$$\begin{aligned} \varLambda (\psi _{\kappa}, \psi _{\kappa +1}, \theta \vartheta )&= \varLambda (\nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \vartheta ) \leq \varLambda (\psi _{\kappa -1}, \psi _{\kappa}, \vartheta )\leq \varLambda \biggl(\psi _{\kappa -2}, \psi _{\kappa -1}, \frac{\vartheta}{\theta} \biggr) \\ &\leq \varLambda \biggl(\psi _{\kappa -3}, \psi _{\kappa -2}, \frac{\vartheta}{\theta ^{2}} \biggr)\leq \cdots \leq \varLambda \biggl( \psi _{0}, \psi _{1}, \frac{\vartheta}{\theta ^{\kappa -1}} \biggr). \end{aligned}$$

We obtain

$$\begin{aligned} &\varOmega (\psi _{\kappa}, \psi _{\kappa +1}, \theta \vartheta ) \geq \varOmega \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{\theta ^{\kappa -1}} \biggr), \\ &\varPhi (\psi _{\kappa}, \psi _{\kappa +1}, \theta \vartheta )\leq \varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{\theta ^{\kappa -1}} \biggr)\quad \text{and} \\ & \varLambda (\psi _{\kappa}, \psi _{\kappa +1}, \theta \vartheta ) \leq \varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{\theta ^{\kappa -1}} \biggr). \end{aligned}$$
(4)

Using (A5), (A10) and (A15), we have the following cases:

Case 1. When \(\mathfrak{i}=2\pi +1\), i.e. \(\mathfrak{i}\) is odd, then

$$\begin{aligned} &\varOmega (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \geq \varOmega \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\ast \cdots \\ &\qquad {}\ast\varOmega \biggl(\psi _{\kappa +2\pi -1}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{\kappa +2\pi}, \psi _{\kappa +2\pi +1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr), \\ &\varPhi (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \leq \varPhi \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \cdots \\ &\qquad {}\circ\varPhi \biggl(\psi _{\kappa +2\pi -1}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{\kappa +2\pi}, \psi _{\kappa +2\pi +1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \end{aligned}$$

and

$$\begin{aligned} &\varLambda (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \leq \varLambda \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \cdots \\ &\qquad {}\circ\varLambda \biggl(\psi _{\kappa +2\pi -1}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{\kappa +2\pi}, \psi _{\kappa +2\pi +1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1}) \wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr). \end{aligned}$$

Using (4) in the above inequalities, we deduce

$$\begin{aligned} &\varOmega (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \geq \varOmega \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3\theta ^{\kappa -1}(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3\theta ^{\kappa}(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\ast \cdots \\ &\qquad {}\ast\varOmega \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}\theta ^{\kappa +2\pi -2}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}\theta ^{\kappa +2\pi -1}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr), \\ &\varPhi (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \leq \varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3\theta ^{\kappa -1}(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3\theta ^{\kappa}(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \cdots \\ &\qquad {}\circ\varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}\theta ^{\kappa +2\pi -2}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}\theta ^{\kappa +2\pi -1}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr), \\ &\varLambda (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \leq \varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3\theta ^{\kappa -1}(\wp (\psi _{\kappa}, \psi _{\kappa +1}))} \biggr)\circ \varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3\theta ^{\kappa}(\wp (\psi _{\kappa +1}, \psi _{\kappa +2}))} \biggr) \\ &\qquad {}\circ \cdots \\ &\qquad {}\circ\varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}\theta ^{\kappa +2\pi -2}(\wp (\psi _{\kappa +2\pi -1}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa +2}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}\theta ^{\kappa +2\pi -1}(\wp (\psi _{\kappa +2\pi}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa +2}, \psi _{\kappa +2\pi +1}))} \biggr). \end{aligned}$$

Case 2. When \(\mathfrak{i}=2\pi \), i.e. \(\mathfrak{i}\) is even, then

$$\begin{aligned} &\varOmega (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \geq \varOmega \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \ast \varOmega \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\ast \cdots \\ &\qquad {}\ast\varOmega \biggl(\psi _{\kappa +2\pi -3}, \psi _{\kappa +2\pi -2}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr), \\ &\varPhi (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \leq \varPhi \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \circ \varPhi \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \cdots \\ &\qquad {}\circ\varPhi \biggl(\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \end{aligned}$$

and

$$\begin{aligned} &\varLambda (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \leq \varLambda \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \circ \varLambda \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \cdots \\ &\qquad {}\circ\varLambda \biggl(\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi -3}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{\kappa +2\pi -3}, \psi _{\kappa +2\pi -2}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi}) \wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr). \end{aligned}$$

Using (4) in the above inequalities, we deduce

$$\begin{aligned} &\varOmega (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \geq \varOmega \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3\theta ^{\kappa -1}(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr)\ast \varOmega \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3\theta ^{\kappa}(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\ast \cdots \\ &\qquad {}\ast\varOmega \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}\theta ^{\kappa +2\pi -5}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}\theta ^{\kappa +2\pi -4}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}\theta ^{\kappa +2\pi -3}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr), \\ &\varPhi (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \leq \varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3\theta ^{\kappa -1}(\wp (\psi _{\kappa}, \psi _{\kappa +1}))} \biggr)\circ \varPhi \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3\theta ^{\kappa}(\wp (\psi _{\kappa +1}, \psi _{\kappa +2}))} \biggr) \\ &\qquad {}\circ \cdots \\ &\qquad {}\circ\varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}\theta ^{\kappa +2\pi -5}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi -3})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa +2}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}\theta ^{\kappa +2\pi -4}(\wp (\psi _{\kappa +2\pi -3}, \psi _{\kappa +2\pi -2})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa +2}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}\theta ^{\kappa +2\pi -3}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa +2}, \psi _{\kappa +2\pi}))} \biggr) \end{aligned}$$

and

$$\begin{aligned} &\varLambda (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \leq \varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3\theta ^{\kappa -1}(\wp (\psi _{\kappa}, \psi _{\kappa +1}))} \biggr)\circ \varLambda \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3\theta ^{\kappa}(\wp (\psi _{\kappa +1}, \psi _{\kappa +2}))} \biggr) \\ &\qquad {}\circ \cdots \\ &\qquad {} \circ\varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}\theta ^{\kappa +2\pi -5} (\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi -3})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa +2}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}\theta ^{\kappa +2\pi -4}(\wp (\psi _{\kappa +2\pi -3}, \psi _{\kappa +2\pi -2})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa +2}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}\theta ^{\kappa +2\pi -3}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa +2}, \psi _{\kappa +2\pi}))} \biggr). \end{aligned}$$

Since \(\kappa ,\omega \in \mathbb{N}\), we have

$$\begin{aligned} \wp (\psi _{\kappa},\psi _{\kappa +\omega} )< \frac{1}{\theta}. \end{aligned}$$

Therefore, from (2), for each case \(\kappa \rightarrow +\infty \), we deduce

$$\begin{aligned} &\lim_{\kappa \rightarrow +\infty}\varOmega (\psi _{\kappa}, \psi _{ \kappa +\mathfrak{i}}, \vartheta )=1\ast 1\ast \cdots \ast 1=1, \\ &\lim_{\kappa \rightarrow +\infty}\varPhi (\psi _{\kappa}, \psi _{ \kappa +\mathfrak{i}}, \vartheta )=0\circ 0\circ \cdots \circ 0=0 \end{aligned}$$

and

$$\begin{aligned} \lim_{\kappa \rightarrow +\infty}\varLambda (\psi _{\kappa}, \psi _{ \kappa +\mathfrak{i}}, \vartheta )=0\circ 0\circ \cdots \circ 0&=0. \end{aligned}$$

Therefore, \(\{\psi _{\kappa}\}\) is a Cauchy sequence. Since \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) is complete, there exists

$$\begin{aligned} \lim_{\kappa \rightarrow +\infty}\psi _{\kappa}=\psi . \end{aligned}$$

Using (A5), (A10), (A15) and (2), we get

$$\begin{aligned} &\varOmega (\psi , \nabla \psi , \vartheta ) \\ &\quad \geq \varOmega \biggl( \psi , \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr)\ast \varOmega \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\qquad {}\ast\varOmega \biggl(\psi _{\kappa +1},\nabla \psi , \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\quad =\varOmega \biggl(\psi , \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr)\ast \varOmega \biggl(\nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\qquad {}\ast\varOmega \biggl(\nabla \psi _{\kappa},\nabla \psi , \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\quad \geq \varOmega \biggl(\psi , \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \ast \varOmega \biggl(\psi _{\kappa -1}, \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{\kappa},\psi , \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\quad \rightarrow 1\ast 1\ast 1=1 \quad \text{as } \kappa \rightarrow + \infty , \\ &\varPhi (\psi , \nabla \psi , \vartheta ) \\ &\quad \leq \varPhi \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \circ \varPhi \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{\kappa +1}, \nabla \psi , \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\quad =\varPhi \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr)\circ \varPhi \biggl(\nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\nabla \psi _{\kappa}, \nabla \psi , \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\quad \leq \varPhi \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr)\circ \varPhi \biggl(\psi _{\kappa -1}, \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{\kappa},\psi , \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\quad \rightarrow 0\circ 0\circ 0=0 \quad \text{as } \kappa \rightarrow + \infty \end{aligned}$$

and

$$\begin{aligned} &\varLambda (\psi , \nabla \psi , \vartheta ) \\ &\quad \leq \varLambda \biggl( \psi , \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr)\circ \varLambda \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\qquad {}\circ\varLambda \biggl(\psi _{\kappa +1}, \nabla \psi , \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\quad =\varLambda \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr)\circ \varLambda \biggl(\nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\nabla \psi _{\kappa}, \nabla \psi , \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\quad \leq \varLambda \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \circ \varLambda \biggl(\psi _{\kappa -1}, \psi _{\kappa}, \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{\kappa},\psi , \frac{\vartheta}{3(\wp (\psi , \nabla \psi ))} \biggr) \\ &\quad \rightarrow 0\circ 0\circ 0=0\quad \text{as } \kappa \rightarrow + \infty . \end{aligned}$$

Hence, \(\nabla \psi =\psi \). Let \(\nabla \mu =\mu \) for some \(\mu \in \varDelta \), then

$$\begin{aligned} &1\geq \varOmega (\mu , \psi , \vartheta )=\varOmega (\nabla \mu , \nabla \psi , \vartheta )\geq \varOmega \biggl(\mu , \psi , \frac{\vartheta}{\theta} \biggr)= \varOmega \biggl(\nabla \mu , \nabla \psi , \frac{\vartheta}{\theta} \biggr) \\ &\hphantom{1}\geq \varOmega \biggl(\mu , \psi , \frac{\vartheta}{\theta ^{2}} \biggr)\geq \cdots \geq \varOmega \biggl(\mu , \psi , \frac{\vartheta}{\theta ^{\kappa}} \biggr)\rightarrow 1 \quad \text{as } \kappa \rightarrow +\infty , \\ &0\leq \varPhi (\mu , \psi , \vartheta )=\varPhi (\nabla \mu , \nabla \psi , \vartheta )\leq \varPhi \biggl(\mu , \psi , \frac{\vartheta}{\theta} \biggr)=\varPhi \biggl(\nabla \mu , \nabla \psi , \frac{\vartheta}{\theta} \biggr) \\ &\hphantom{0}\leq \varPhi \biggl(\mu , \psi , \frac{\vartheta}{\theta ^{2}} \biggr) \leq \cdots \leq \varPhi \biggl(\mu , \psi , \frac{\vartheta}{\theta ^{\kappa}} \biggr)\rightarrow 0 \quad \text{as } \kappa \rightarrow +\infty \end{aligned}$$

and

$$\begin{aligned} 0&\leq \varLambda (\mu , \psi , \vartheta )=\varLambda (\nabla \mu , \nabla \psi , \vartheta )\leq \varLambda \biggl(\mu , \psi , \frac{\vartheta}{\theta} \biggr)= \varLambda \biggl(\nabla \mu , \nabla \psi , \frac{\vartheta}{\theta} \biggr) \\ &\leq \varLambda \biggl(\mu , \psi , \frac{\vartheta}{\theta ^{2}} \biggr)\leq \cdots \leq \varLambda \biggl(\mu , \psi , \frac{\vartheta}{\theta ^{\kappa}} \biggr)\rightarrow 0 \quad \text{as } \kappa \rightarrow +\infty \end{aligned}$$

by using (A3), (A8) and (A13), \(\psi =\mu \). Therefore, has a unique fixed point. □

Definition 7

Let \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) be an ENRMS. A map \(\nabla \colon \varDelta \rightarrow \varDelta \) is an ENRC(extended neutrosophic rectangular contraction) if there exists \(0<\theta <1\) such that

$$\begin{aligned} &\frac{1}{\varOmega (\mathcal{P}\psi , \mathcal{P}\varGamma , \vartheta )}-1 \leq \theta \biggl[\frac{1}{\varOmega (\psi , \varGamma , \vartheta )}-1 \biggr] \end{aligned}$$
(5)
$$\begin{aligned} &\varPhi (\mathcal{P}\psi , \mathcal{P}\varGamma , \vartheta )\leq \theta \varPhi (\psi , \varGamma , \vartheta ) \end{aligned}$$
(6)

and

$$\begin{aligned} \varLambda (\mathcal{P}\psi , \mathcal{P}\varGamma , \vartheta )\leq \theta \varLambda (\psi , \varGamma , \vartheta ) \end{aligned}$$
(7)

for all \(\psi , \varGamma \in \varDelta \) and \(\vartheta >0\).

Now, we prove the theorem for ENRC.

Theorem 2

Let \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) be a complete ENRMS with \(\wp \colon \varDelta \times \varDelta \rightarrow [1, +\infty )\) and suppose that

$$\begin{aligned} \lim_{\vartheta \rightarrow +\infty}\varOmega (\psi , \varGamma , \vartheta )=1,\qquad \lim _{\vartheta \rightarrow +\infty}\varPhi (\psi , \varGamma , \vartheta )=0 \quad \textit{and}\quad \lim _{\vartheta \rightarrow +\infty}\varLambda (\psi , \varGamma , \vartheta )=0 \end{aligned}$$
(8)

for all \(\psi , \varGamma \in \varDelta \) and \(\vartheta >0\). Let \(\nabla \colon \varDelta \rightarrow \varDelta \) be an ENRC. Further, suppose that for an arbitrary \(\psi _{0}\in \varDelta \) and \(\kappa ,\omega \in \mathbb{N}\), we have

$$\begin{aligned} \wp (\psi _{\kappa},\psi _{\kappa +\omega} )< \frac{1}{\theta}. \end{aligned}$$

Then has a unique fixed point.

Proof

Let \(\psi _{0}\) be a point of Δ and define a sequence \(\psi _{\kappa}\) by \(\psi _{\kappa}=\nabla ^{\kappa}\psi _{0}=\nabla \psi _{\kappa -1}\), \(\kappa \in \mathbb{N}\). By using (5), (6) and (7) for all \(\vartheta >0\), \(\kappa >\omega \), we deduce

$$\begin{aligned}& \frac{1}{\varOmega (\psi _{\kappa}, \psi _{\kappa +1}, \vartheta )}-1 \\& \qquad = \frac{1}{\varOmega (\nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \vartheta )}-1 \leq \theta \biggl[ \frac{1}{\varOmega (\psi _{\kappa -1}, \psi _{\kappa}, \vartheta )} \biggr]= \frac{\theta}{\varOmega (\psi _{\kappa -1}, \psi _{\kappa}, \vartheta )}- \theta \\& \quad \Rightarrow \quad \frac{1}{\varOmega (\psi _{\kappa}, \psi _{\kappa +1}, \vartheta )} \\& \hphantom{\quad \Rightarrow \quad }\quad \leq \frac{\theta}{\varOmega (\psi _{\kappa -1}, \psi _{\kappa}, \vartheta )}+(1- \theta )\leq \frac{\theta ^{2}}{\varOmega (\psi _{\kappa -2}, \psi _{\kappa -1}, \vartheta )}+ \theta (1-\theta )+(1-\theta ). \end{aligned}$$

Carrying on in this manner, we deduce

$$\begin{aligned} \frac{1}{\varOmega (\psi _{\kappa}, \psi _{\kappa +1}, \vartheta )}& \leq \frac{\theta ^{\kappa}}{\varOmega (\psi _{0}, \psi _{1}, \vartheta )}+ \theta ^{\kappa -1}(1-\theta )+ \theta ^{\kappa -2}(1-\theta )+\cdots + \theta (1-\theta )+(1-\theta ) \\ &\leq \frac{\theta ^{\kappa}}{\varOmega (\psi _{0}, \psi _{1}, \vartheta )}+ \bigl( \theta ^{\kappa -1}+\theta ^{\kappa -2}+ \cdots +1 \bigr) (1-\theta ) \\ &\leq \frac{\theta ^{\kappa}}{\varOmega (\psi _{0}, \psi _{1}, \vartheta )}+ \bigl(1- \theta ^{\kappa} \bigr). \end{aligned}$$

We obtain

$$\begin{aligned} &\frac{1}{\frac{\theta ^{\kappa}}{\varOmega (\psi _{0}, \psi _{1}, \vartheta )}+(1-\theta ^{\kappa})} \leq \varOmega (\psi _{\kappa}, \psi _{\kappa +1}, \vartheta ) , \end{aligned}$$
(9)
$$\begin{aligned} &\varPhi (\psi _{\kappa}, \psi _{\kappa +1}, \vartheta )=\varPhi ( \nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \vartheta )\leq \theta \varPhi (\psi _{\kappa -1}, \psi _{\kappa}, \vartheta )= \varPhi (\nabla \psi _{\kappa -2}, \nabla \psi _{\kappa -1}, \vartheta ) \\ &\hphantom{\varPhi (\psi _{\kappa}, \psi _{\kappa +1}, \vartheta )}\leq \theta ^{2}\varPhi (\psi _{\kappa -2}, \psi _{\kappa -1}, \vartheta )\leq \cdots \leq \theta ^{\kappa}\varPhi (\psi _{0}, \psi _{1}, \vartheta ) \end{aligned}$$
(10)

and

$$\begin{aligned} \varLambda (\psi _{\kappa}, \psi _{\kappa +1}, \vartheta )&= \varLambda (\nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \vartheta )\leq \theta \varLambda (\psi _{\kappa -1}, \psi _{\kappa}, \vartheta )=\varLambda ( \nabla \psi _{\kappa -2}, \nabla \psi _{ \kappa -1}, \vartheta ) \\ &\leq \theta ^{2}\varLambda (\psi _{\kappa -2}, \psi _{\kappa -1}, \vartheta )\leq \cdots \leq \theta ^{\kappa}\varLambda (\psi _{0}, \psi _{1}, \vartheta ). \end{aligned}$$
(11)

Using (A5), (A10) and (A15), we have the following cases:

Case 1. When \(\mathfrak{i}=2\pi +1\), i.e. \(\mathfrak{i}\) is odd, then

$$\begin{aligned} &\varOmega (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \geq \varOmega \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\ast\varOmega \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr)\ast \cdots \\ &\qquad {}\ast\varOmega \biggl(\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi -1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{\kappa +2\pi -1}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{\kappa +2\pi}, \psi _{\kappa +2\pi +1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1}) \cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr), \\ &\varPhi (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \leq \varPhi \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr)\circ \varPhi \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \cdots \\ &\qquad {} \circ\varPhi \biggl(\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi -1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{\kappa +2\pi -1}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{\kappa +2\pi}, \psi _{\kappa +2\pi +1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \end{aligned}$$

and

$$\begin{aligned} &\varLambda (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \leq \varLambda \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ\varLambda \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \circ \cdots \\ &\qquad {} \circ\varLambda \biggl(\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi -1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{\kappa +2\pi -1}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{\kappa +2\pi}, \psi _{\kappa +2\pi +1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr). \end{aligned}$$

Using (4) in the above inequalities, we deduce

$$\begin{aligned} &\varOmega (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \geq \frac{1}{\frac{\theta ^{\kappa}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} )}+(1-\theta ^{\kappa})} \ast \frac{1}{\frac{\theta ^{\kappa +1}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} )}+(1-\theta ^{\kappa +1})} \ast \cdots \\ &\qquad {}\ast \frac{1}{\frac{\theta ^{\kappa +2\pi -2}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} )}+(1-\theta ^{\kappa +2\pi -2})} \\ &\qquad {}\ast \frac{1}{\frac{\theta ^{\kappa +2\pi -1}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi + 1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} )}+(1-\theta ^{\kappa +2\pi -1})} \\ &\qquad {}\ast \frac{1}{\frac{\theta ^{\kappa +2\pi}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} )}+(1-\theta ^{\kappa +2\pi})}, \end{aligned}$$
$$\begin{aligned} &\varPhi (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \leq \theta ^{\kappa}\varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ\theta ^{\kappa +1}\varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr)\circ \cdots \\ &\qquad {}\circ\theta ^{\kappa +2\pi -2}\varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1}) \wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \theta ^{\kappa +2\pi -1}\varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1}) \wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \theta ^{\kappa +2\pi}\varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1}) \wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \end{aligned}$$

and

$$\begin{aligned} &\varLambda (\psi _{\kappa}, \psi _{\kappa +2\pi +1}, \vartheta ) \\ &\quad \leq \theta ^{\kappa}\varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ\theta ^{\kappa +1}\varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr)\circ \cdots \\ &\qquad {}\circ\theta ^{\kappa +2\pi -2}\varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \theta ^{\kappa +2\pi -1}\varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr) \\ &\qquad {}\circ \theta ^{\kappa +2\pi}\varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi}(\wp (\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi +1})\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi +1}))} \biggr). \end{aligned}$$

Case 2. When \(\mathfrak{i}=2\pi \), i.e. \(\mathfrak{i}\) is even, then

$$\begin{aligned} &\varOmega (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \geq \varOmega \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \ast \varOmega \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\ast \cdots \\ &\qquad {}\ast\varOmega \biggl(\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi -3}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{\kappa +2\pi -3}, \psi _{\kappa +2\pi -2}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\ast \varOmega \biggl(\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp\ (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr), \\ &\varPhi (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \leq \varPhi \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \circ \varPhi \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{\kappa +2}, \psi _{\kappa +3}, \frac{\vartheta}{3^{2}(\wp (\psi _{\kappa +2}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr)\circ \cdots \\ &\qquad {} \circ\varPhi \biggl(\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi -3}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{\kappa +2\pi -3}, \psi _{\kappa +2\pi -2}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \varPhi \biggl(\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \end{aligned}$$

and

$$\begin{aligned} &\varLambda (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \leq \varLambda \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \circ \varLambda \biggl(\psi _{\kappa +1}, \psi _{\kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \cdots \\ &\qquad {}\circ\varLambda \biggl(\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi -3}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{\kappa +2\pi -3}, \psi _{\kappa +2\pi -2}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \varLambda \biggl(\psi _{\kappa +2\pi -2}, \psi _{\kappa +2\pi}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi +1})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr). \end{aligned}$$

Using (4) in the above inequalities, we deduce

$$\begin{aligned} &\varOmega (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \geq \frac{1}{\frac{\theta ^{\kappa}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} )}+(1-\theta ^{\kappa})} \ast \frac{1}{\frac{\theta ^{\kappa +1}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} )}+(1-\theta ^{\kappa +1})} \\ &\qquad {}\ast \frac{1}{\frac{\theta ^{\kappa +2}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{2}(\wp (\psi _{\kappa +2}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} )}+(1-\theta ^{\kappa +2})} \ast \cdots \ast \\ &\qquad {}\ast \frac{1}{\frac{\theta ^{\kappa +2\pi -4}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} )}+(1-\theta ^{\kappa +2\pi -4})} \\ &\qquad {}\ast \frac{1}{\frac{\theta ^{\kappa +2\pi -3}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} )}+(1-\theta ^{\kappa +2\pi -3})} \\ &\qquad {}\ast \frac{1}{\frac{\theta ^{\kappa +2\pi -2}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} )}+(1-\theta ^{\kappa +2\pi -2})}, \\ &\varPhi (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \leq \theta ^{\kappa}\varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \theta ^{\kappa +1}\varPhi \biggl(\psi _{\kappa +1}, \psi _{ \kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \circ \cdots \\ & \qquad {}\circ\theta ^{\kappa +2\pi -4}\varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \theta ^{\kappa +2\pi -3}\varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \theta ^{\kappa +2\pi -2}\varPhi \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr), \\ &\varLambda (\psi _{\kappa}, \psi _{\kappa +2\pi}, \vartheta ) \\ &\quad \leq \theta ^{\kappa}\varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \theta ^{\kappa +1}\varLambda \biggl(\psi _{\kappa +1}, \psi _{ \kappa +2}, \frac{\vartheta}{3(\wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \circ \cdots \\ &\qquad {}\circ \theta ^{\kappa +2\pi -4}\varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi}) \cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \theta ^{\kappa +2\pi -3}\varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi}) \cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr) \\ &\qquad {}\circ \theta ^{\kappa +2\pi -2}\varLambda \biggl(\psi _{0}, \psi _{1}, \frac{\vartheta}{3^{\pi -1}(\wp (\psi _{\kappa +2\pi -4}, \psi _{\kappa +2\pi})\wp (\psi _{\kappa +2\pi -6}, \psi _{\kappa +2\pi})\cdots \wp (\psi _{\kappa}, \psi _{\kappa +2\pi}))} \biggr). \end{aligned}$$

Since \(\kappa ,\omega \in \mathbb{N}\), we have

$$\begin{aligned} \wp (\psi _{\kappa},\psi _{\kappa +\omega} )< \frac{1}{\theta}. \end{aligned}$$

Therefore, from (8), for each case \(\kappa \rightarrow +\infty \), we deduce that

$$\begin{aligned} \lim_{\kappa \rightarrow +\infty}\varOmega (\psi _{\kappa}, \psi _{ \kappa +\omega}, \vartheta )&=1\ast 1\ast \cdots \ast =1, \\ \lim_{\kappa \rightarrow +\infty}\varPhi (\psi _{\kappa}, \psi _{ \kappa +\omega}, \vartheta )&=0\circ 0\circ \cdots \circ 0=0 \end{aligned}$$

and

$$\begin{aligned} \lim_{\kappa \rightarrow +\infty}\varLambda (\psi _{\kappa}, \psi _{ \kappa +\omega}, \vartheta )&=0\circ 0\circ \cdots \circ 0=0. \end{aligned}$$

Therefore, \(\{\psi _{\kappa}\}\) is a Cauchy sequence. Since \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) is complete, there exists

$$\begin{aligned} \lim_{\kappa \rightarrow +\infty}\psi _{\kappa}=\psi . \end{aligned}$$

From (A5), (A10) and (A15), we get

$$\begin{aligned} \frac{1}{\varOmega (\nabla \psi _{\kappa}, \nabla \psi , \vartheta )}-1& \leq \theta \biggl[ \frac{1}{\varOmega (\psi _{\kappa}, \psi , \vartheta )}-1 \biggr]= \frac{\theta}{\varOmega (\psi _{\kappa}, \psi , \vartheta )}-\theta \\ &\Rightarrow \frac{1}{\frac{\theta}{\varOmega (\psi _{\kappa}, \psi , \vartheta )}+(1-\theta )} \leq \varOmega (\nabla \psi _{\kappa}, \nabla \psi , \vartheta ). \end{aligned}$$

Using the above inequality, we obtain

$$\begin{aligned} &\begin{aligned}\varOmega (\psi , \nabla \psi , \vartheta )\geq{}& \varOmega \biggl( \psi , \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr)\ast \varOmega \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ &{}\ast \varOmega \biggl(\psi _{\kappa +1}, \nabla \psi , \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ \geq{}& \varOmega \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \ast \varOmega \biggl(\nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ &{}\ast \varOmega \biggl(\nabla \psi _{\kappa}, \nabla \psi , \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ \geq {}&\varOmega \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{(3\wp (\psi , \nabla \psi )} \biggr) \ast \frac{1}{\frac{\theta ^{\kappa}}{\varOmega (\psi _{0}, \psi _{1}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )})+(1-\theta ^{\kappa})}} \\ &{}\ast \frac{1}{\frac{\theta}{\varOmega (\psi _{\kappa}, \psi , \frac{\vartheta}{3\wp (\psi , \nabla \psi )} )+(1-\theta )}} \\ \rightarrow{}& 1\ast 1\ast 1=1 \quad \text{as } \kappa \rightarrow + \infty , \end{aligned} \\ &\begin{aligned} \varPhi (\psi , \nabla \psi , \vartheta )\leq{}& \varPhi \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \circ \varPhi \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ &{}\circ \varPhi \biggl(\psi _{\kappa +1}, \nabla \psi , \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ \leq{}& \varPhi \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \circ \varPhi \biggl(\nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ &{}\circ \varPhi \biggl(\nabla \psi _{\kappa}, \nabla \psi , \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ \leq{}& \varPhi \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \circ \theta ^{ \kappa -1}\varPhi \biggl(\psi _{\kappa -1}, \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ &{}\circ \theta \varPhi \biggl(\psi _{\kappa}, \psi , \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ \rightarrow{}& 0\circ 0\circ 0=0 \quad \text{as } \kappa \rightarrow + \infty \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \varLambda (\psi , \nabla \psi , \vartheta )\leq{}& \varLambda \biggl( \psi , \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr)\circ \varLambda \biggl(\psi _{\kappa}, \psi _{\kappa +1}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ &{}\circ \varLambda \biggl(\psi _{\kappa +1}, \nabla \psi , \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ \leq{}& \varLambda \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \circ \varLambda \biggl(\nabla \psi _{\kappa -1}, \nabla \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ &{}\circ \varLambda \biggl(\nabla \psi _{\kappa}, \nabla \psi , \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ \leq{}& \varLambda \biggl(\psi , \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \circ \theta ^{ \kappa -1}\varLambda \biggl(\psi _{\kappa -1}, \psi _{\kappa}, \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ &{}\circ \theta \varLambda \biggl(\psi _{\kappa}, \psi , \frac{\vartheta}{3\wp (\psi , \nabla \psi )} \biggr) \\ \rightarrow{}& 0\circ 0\circ 0=0\quad \text{as } \kappa \rightarrow + \infty . \end{aligned}$$

Hence, \(\nabla \psi =\psi \). Let \(\nabla \mu =\mu \) for some \(\mu \in \varDelta \), then

$$\begin{aligned} \frac{1}{\varOmega (\psi , \mu , \vartheta )}-1&= \frac{1}{\varOmega (\nabla \psi , \nabla \mu , \vartheta )}-1 \\ &\leq \theta \biggl[\frac{1}{\varOmega (\psi , \mu , \vartheta )}-1 \biggr]< \frac{1}{\varOmega (\psi , \mu , \vartheta )}-1, \end{aligned}$$

which is a contradiction.

$$\begin{aligned} \varPhi (\psi , \mu , \vartheta )=\varPhi (\nabla \psi , \nabla \mu , \vartheta )\leq \theta \varPhi (\psi , \mu , \vartheta )< \varPhi ( \psi , \mu , \vartheta ), \end{aligned}$$

which is a contradiction and

$$\begin{aligned} \varLambda (\psi , \mu , \vartheta )=\varLambda (\nabla \psi , \nabla \mu , \vartheta )\leq \theta \varLambda (\psi , \mu , \vartheta )< \varLambda (\psi , \mu , \vartheta ), \end{aligned}$$

which is a contradiction. Therefore, \(\varOmega (\psi , \mu , \vartheta )=1\), \(\varPhi (\psi , \mu , \vartheta )=0\) and \(\varLambda (\psi , \mu , \vartheta )=0\), hence, \(\psi =\mu \). Hence, has a unique fixed point. □

Example 2

Let \(\varDelta =[0, 1]\) and \(\wp \colon \varDelta \times \varDelta \rightarrow [1, +\infty )\) be a function given by

$$\begin{aligned} \wp (\psi , \varGamma )= \textstyle\begin{cases} 1 &\text{if } \psi =\varGamma , \\ \frac{1+\max \{\psi , \varGamma \}}{1+\min \{\psi , \varGamma \}} & \text{if } \psi \neq \varGamma . \end{cases}\displaystyle \end{aligned}$$

Define \(\varOmega , \varPhi , \varLambda \colon \varDelta \times \varDelta \times (0, +\infty )\rightarrow [0, 1]\) as

$$\begin{aligned} &\varOmega (\psi , \varGamma , \vartheta )= \frac{\vartheta}{\vartheta + \vert \psi -\varGamma \vert ^{2}}, \\ &\varPhi (\psi , \varGamma , \vartheta )= \frac{ \vert \psi -\varGamma \vert }{\vartheta + \vert \psi -\varGamma \vert ^{2}}, \\ &\varLambda (\psi , \varGamma , \vartheta )= \frac{ \vert \psi -\varGamma \vert ^{2}}{\vartheta}. \end{aligned}$$

Then \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) is a complete ENRMS with continuous t-norm \(\wp \ast \tau =\wp \tau \) and continuous t-co-norm \(\wp \circ \tau =\max \{\wp , \tau \}\).

Define \(\nabla \colon \varDelta \rightarrow \varDelta \) by \(\nabla (\psi )=\frac{1-3^{-\psi}}{7}\) and take \(\theta \in [\frac{1}{2}, 1)\), then

$$\begin{aligned} &\varOmega (\nabla \psi , \nabla \varGamma , \theta \vartheta )= \varOmega \biggl(\frac{1-3^{-\psi}}{7}, \frac{1-3^{-\varGamma}}{7}, \theta \vartheta \biggr) \\ &\hphantom{\varOmega (\nabla \psi , \nabla \varGamma , \theta \vartheta )}= \frac{\theta \vartheta}{\theta \vartheta + \vert \frac{1-3^{-\psi}}{7}-\frac{1-3^{-\varGamma}}{7} \vert ^{2}}= \frac{\theta \vartheta}{\theta \vartheta +\frac{ \vert 3^{-\psi}-3^{-\varGamma} \vert ^{2}}{49}} \\ &\hphantom{\varOmega (\nabla \psi , \nabla \varGamma , \theta \vartheta )}\geq \frac{\theta \vartheta}{\theta \vartheta +\frac{ \vert \psi -\varGamma \vert ^{2}}{49}}= \frac{49\theta \vartheta}{49\theta \vartheta + \vert \psi -\varGamma \vert } \geq \frac{\vartheta}{\vartheta + \vert \psi -\varGamma \vert }= \varOmega (\psi , \varGamma , \vartheta ), \\ &\varPhi (\nabla \psi , \nabla \varGamma , \theta \vartheta )= \varPhi \biggl( \frac{1-3^{-\psi}}{7}, \frac{1-3^{-\varGamma}}{7}, \theta \vartheta \biggr) \\ &\hphantom{\varPhi (\nabla \psi , \nabla \varGamma , \theta \vartheta )}= \frac{ \vert \frac{1-3^{-\psi}}{7}-\frac{1-3^{-\varGamma}}{7} \vert ^{2}}{\theta \vartheta + \vert \frac{1-3^{-\psi}}{7}-\frac{1-3^{-\varGamma}}{7} \vert ^{2}}= \frac{\frac{ \vert 3^{-\psi}-3^{-\varGamma} \vert ^{2}}{49}}{\theta \vartheta +\frac{ \vert 3^{-\psi}-3^{-\varGamma} \vert ^{2}}{49}} \\ &\hphantom{\varPhi (\nabla \psi , \nabla \varGamma , \theta \vartheta )}= \frac{ \vert 3^{-\psi}-3^{-\varGamma} \vert ^{2}}{49\theta \vartheta + \vert 3^{-\psi}-3^{-\varGamma} \vert ^{2}} \\ &\hphantom{\varPhi (\nabla \psi , \nabla \varGamma , \theta \vartheta )}\leq \frac{ \vert \psi -\varGamma \vert ^{2}}{49\theta \vartheta + \vert \psi -\varGamma \vert ^{2}} \leq \frac{ \vert \psi -\varGamma \vert ^{2}}{\vartheta + \vert \psi -\varGamma \vert ^{2}}= \varPhi (\psi , \varGamma , \vartheta ) \end{aligned}$$

and

$$\begin{aligned} \varLambda (\nabla \psi , \nabla \varGamma , \theta \vartheta )&= \varLambda \biggl(\frac{1-3^{-\psi}}{7}, \frac{1-3^{-\varGamma}}{7}, \theta \vartheta \biggr) \\ &= \frac{ \vert \frac{1-3^{-\psi}}{7}-\frac{1-3^{-\varGamma}}{7} \vert ^{2}}{\theta \vartheta}= \frac{\frac{ \vert 3^{-\psi}-3^{-\varGamma} \vert ^{2}}{49}}{\theta \vartheta} \\ &=\frac{ \vert 3^{-\psi}-3^{-\varGamma} \vert ^{2}}{49\theta \vartheta}\leq \frac{ \vert \psi -\varGamma \vert }{49\theta \vartheta}\leq \frac{ \vert \psi -\varGamma \vert }{\vartheta}=\varLambda (\psi , \varGamma , \vartheta ). \end{aligned}$$

As a result, all of the conditions of Theorem 1 are satisfied, and 0 is the only fixed point for .

4 Application to fractional differential equations

This section is devoted to finding a solution of the following fractional differential equation consisting of Caputo fractional derivative. Further details can be found in [29].

$$\begin{aligned} \mathcal{D}^{\delta}_{0+}\psi (\tau )+\mathfrak{g} \bigl(\tau , \psi (\tau ) \bigr)=0, \quad 0< \tau < 1, \end{aligned}$$
(12)

where \(1<\delta \leq 2\), \(\psi (0)+\psi{'}(0)=0\), \(\psi (1)+\psi{'}(1)=0\) are the boundary conditions with \(\mathfrak{g}\colon [0, 1]\times [0, \infty )\rightarrow [0, \infty )\) being continuous. Define Ω, Φ and Λ given by

$$\begin{aligned} &\varOmega \bigl(\psi (\tau ), \varGamma (\tau ), \vartheta \bigr)=\sup _{\tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{\vartheta}{\vartheta + \vert \psi (\tau )-\varGamma (\tau ) \vert ^{2}} \quad \text{for all } \psi , \varGamma \in \varDelta \text{ and } \vartheta >0, \\ &\varPhi \bigl(\psi (\tau ), \varGamma (\tau ), \vartheta \bigr)=1-\sup _{\tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{\vartheta}{\vartheta + \vert \psi (\tau )-\varGamma (\tau ) \vert ^{2}} \quad \text{for all } \psi , \varGamma \in \varDelta \text{ and } \vartheta >0 \end{aligned}$$

and

$$\begin{aligned} \varLambda \bigl(\psi (\tau ), \varGamma (\tau ), \vartheta \bigr)&=\sup _{ \tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{ \vert \psi (\tau )-\varGamma (\tau ) \vert ^{2}}{\vartheta} \quad \text{for all } \psi , \varGamma \in \varDelta \text{ and } \vartheta >0, \end{aligned}$$

with continuous t-norm and continuous t-co-norm defined by \(\hat{e}\ast \breve{a}=\hat{e}\cdot \breve{a}\) and \(\hat{e}\circ \breve{a}=\max \{\hat{e}, \breve{a}\}\), respectively. Define \(\wp \colon \varDelta \times \varDelta \rightarrow [1, +\infty )\) as

$$\begin{aligned} \wp (\psi , \varGamma )&=\psi +\varGamma +1. \end{aligned}$$

Then \((\varDelta , \varOmega , \varPhi , \varLambda , \ast , \circ )\) is a complete ENRMS. Note that \(\psi \in \varDelta \) solves (12) whenever \(\psi \in \varDelta \) is the solution of

$$\begin{aligned} \psi (\tau )={}&\frac{1}{\Gamma (\delta )} \int _{0}^{1}(1-\zeta )^{ \delta -1}(1-\tau ) \mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)\,\mathit{d} \zeta \\ &{}+\frac{1}{\Gamma (\delta -1)} \int _{0}^{1}(1-\zeta )^{\delta -2}(1- \tau ) \mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)\,\mathit{d}\zeta \\ &{}+ \frac{1}{\Gamma (\delta )} \int _{0}^{\tau}(\tau -\zeta )^{\delta -1} \mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)\,\mathit{d}\zeta . \end{aligned}$$

Theorem 3

Consider the operator \(\nabla \colon \varDelta \rightarrow \varDelta \) as

$$\begin{aligned} \nabla \psi (\tau )={}&\frac{1}{\Gamma (\delta )} \int _{0}^{1}(1-\zeta )^{ \delta -1}(1-\tau ) \mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)\,\mathit{d} \zeta \\ &{}+\frac{1}{\Gamma (\delta -1)} \int _{0}^{1}(1-\zeta )^{\delta -2}(1- \tau ) \mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)\,\mathit{d}\zeta \\ &{} + \frac{1}{\Gamma (\delta )} \int _{0}^{\tau}(\tau -\zeta )^{\delta -1} \mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)\,\mathit{d}\zeta . \end{aligned}$$

Suppose that the conditions:

  1. (i)

    for all \(\psi , \varGamma \in \varDelta \), \(\mathfrak{g}\colon [0, 1]\times [0, \infty )\rightarrow [0, \infty )\) and \(\theta \in (0,1)\) satisfies

    $$\begin{aligned} \bigl\vert \mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)-\mathfrak{g} \bigl( \zeta , \varGamma ( \zeta ) \bigr) \bigr\vert \leq \sqrt{\theta} \bigl\vert \psi (\zeta )-\varGamma (\zeta ) \bigr\vert ; \end{aligned}$$
  2. (ii)
    $$\begin{aligned} \sup_{\tau \in (0, 1)} \biggl\vert \frac{1-\tau}{\Gamma (\delta +1)}+ \frac{1-\tau}{\Gamma (\delta )}+ \frac{\tau ^{\delta}}{\Gamma (\delta +1)} \biggr\vert ^{2}=\eta < 1, \end{aligned}$$

hold. Then equation (1) has a unique solution.

Proof

Let \(\psi , \varGamma \in \varDelta \) and consider

$$\begin{aligned} \bigl\vert \nabla \psi (\tau )-\nabla \varGamma (\tau ) \bigr\vert ^{2}={}& \biggl\vert \frac{1}{\Gamma (\delta )} \int _{0}^{1}(1-\zeta )^{\delta -1}(1-\tau ) \bigl( \mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)-\mathfrak{g} \bigl(\zeta , \varGamma ( \zeta ) \bigr) \bigr)\,\mathit{d}\zeta \\ &{}+\frac{1}{\Gamma (\delta -1)} \int _{0}^{1}(1-\zeta )^{\delta -2}(1- \tau ) \bigl(\mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)-\mathfrak{g} \bigl(\zeta , \varGamma (\zeta ) \bigr) \bigr)\,\mathit{d}\zeta \\ &{}+\frac{1}{\Gamma (\delta )} \int _{0}^{\tau}(\tau -\zeta )^{\delta -1} \bigl( \mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)-\mathfrak{g} \bigl(\zeta , \varGamma ( \zeta ) \bigr) \bigr)\,\mathit{d}\zeta \biggr\vert ^{2} \\ \leq{}& \biggl(\frac{1}{\Gamma (\delta )} \int _{0}^{1}(1-\zeta )^{ \delta -1}(1-\tau ) \bigl\vert \bigl(\mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)- \mathfrak{g} \bigl(\zeta , \varGamma (\zeta ) \bigr) \bigr) \bigr\vert \,\mathit{d}\zeta \\ &{}+\frac{1}{\Gamma (\delta -1)} \int _{0}^{1}(1-\zeta )^{\delta -2}(1- \tau ) \bigl\vert \bigl(\mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)-\mathfrak{g} \bigl(\zeta , \varGamma (\zeta ) \bigr) \bigr) \bigr\vert \,\mathit{d}\zeta \\ &{}+\frac{1}{\Gamma (\delta )} \int _{0}^{\tau}(\tau -\zeta )^{\delta -1} \bigl\vert \bigl(\mathfrak{g} \bigl(\zeta , \psi (\zeta ) \bigr)-\mathfrak{g} \bigl( \zeta , \varGamma (\zeta ) \bigr) \bigr) \bigr\vert \,\mathit{d}\zeta \biggr)^{2} \\ \leq{}& \biggl(\frac{1}{\Gamma (\delta )} \int _{0}^{1}(1-\zeta )^{ \delta -1}(1-\tau ) \theta ^{\frac{1}{2}} \bigl\vert \psi (\zeta )-\varGamma ( \zeta ) \bigr\vert \,\mathit{d}\zeta \\ &{}+\frac{1}{\Gamma (\delta -1)} \int _{0}^{1}(1-\zeta )^{\delta -2}(1- \tau ) \theta ^{\frac{1}{2}} \bigl\vert \psi (\zeta )-\varGamma (\zeta ) \bigr\vert \,\mathit{d}\zeta \\ &{}+\frac{1}{\Gamma (\delta )} \int _{0}^{\tau}(\tau -\zeta )^{\delta -1} \theta ^{\frac{1}{2}} \bigl\vert \psi (\zeta )-\varGamma (\zeta ) \bigr\vert \,\mathit{d} \zeta \biggr)^{2} \\ ={}&\theta \bigl\vert \psi (\tau )-\varGamma (\tau ) \bigr\vert ^{2} \biggl( \frac{1}{\Gamma (\delta )} \int _{0}^{1}(1-\zeta )^{\delta -1}(1-\tau ) \,\mathit{d}\zeta \\ &{}+\frac{1}{\Gamma (\delta -1)} \int _{0}^{1}(1-\zeta )^{\delta -2}(1- \tau ) \,\mathit{d}\zeta +\frac{1}{\Gamma (\delta )} \int _{0}^{\tau}( \tau -\zeta )^{\delta -1} \,\mathit{d}\zeta \biggr)^{2} \\ ={}&\theta \bigl\vert \psi (\tau )-\varGamma (\tau ) \bigr\vert ^{2} \biggl( \frac{1-\tau}{\Gamma (\delta +1)}+\frac{1-\tau}{\Gamma (\delta )}+ \frac{\tau ^{\delta}}{\Gamma (\delta +1)} \biggr)^{2} \\ \leq{}& \theta \bigl\vert \psi (\tau )-\varGamma (\tau ) \bigr\vert ^{2}\sup_{\tau \in (0, 1)} \biggl(\frac{1-\tau}{\Gamma (\delta +1)}+ \frac{1-\tau}{\Gamma (\delta )}+ \frac{\tau ^{\delta}}{\Gamma (\delta +1)} \biggr)^{2} \\ ={}&\eta \theta \bigl\vert \psi (\tau )-\varGamma (\tau ) \bigr\vert ^{2} \\ \leq{}& \theta \bigl\vert \psi (\tau )-\varGamma (\tau ) \bigr\vert ^{2}. \end{aligned}$$

So, we have

$$\begin{aligned} \bigl\vert \nabla \psi (\tau )-\nabla \varGamma (\tau ) \bigr\vert ^{2}\leq \theta \bigl\vert \psi (\tau )-\varGamma (\tau ) \bigr\vert ^{2}. \end{aligned}$$

Now, for all \(\psi , \varGamma \in \varDelta \), we deduce

$$\begin{aligned} &\varOmega \bigl(\nabla \psi (\tau ), \nabla \varGamma (\tau ), \theta \vartheta \bigr)=\sup_{\tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{\theta \vartheta}{\theta \vartheta + \vert \nabla \psi (\tau )-\nabla \varGamma (\tau ) \vert ^{2}} \\ &\hphantom{\varOmega \bigl(\nabla \psi (\tau ), \nabla \varGamma (\tau ), \theta \vartheta \bigr)}\geq \sup_{\tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{\theta \vartheta}{\theta \vartheta +\theta \vert \psi (\tau )-\varGamma (\tau ) \vert ^{2}} \\ &\hphantom{\varOmega \bigl(\nabla \psi (\tau ), \nabla \varGamma (\tau ), \theta \vartheta \bigr)}=\sup_{\tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{\vartheta}{\vartheta + \vert \psi (\tau )-\varGamma (\tau ) \vert ^{2}} \\ &\hphantom{\varOmega \bigl(\nabla \psi (\tau ), \nabla \varGamma (\tau ), \theta \vartheta \bigr)}=\varOmega \bigl(\psi (\tau ), \varGamma (\tau ), \vartheta \bigr), \\ &\varPhi \bigl(\nabla \psi (\tau ), \nabla \varGamma (\tau ), \theta \vartheta \bigr)=1-\sup_{\tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{\theta \vartheta}{\theta \vartheta + \vert \nabla \psi (\tau )-\nabla \varGamma (\tau ) \vert ^{2}} \\ &\hphantom{\varPhi \bigl(\nabla \psi (\tau ), \nabla \varGamma (\tau ), \theta \vartheta \bigr)}\leq 1-\sup_{\tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{\theta \vartheta}{\theta \vartheta +\theta \vert \psi (\tau )-\varGamma (\tau ) \vert ^{2}} \\ &\hphantom{\varPhi \bigl(\nabla \psi (\tau ), \nabla \varGamma (\tau ), \theta \vartheta \bigr)}=1-\sup_{\tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{\vartheta}{\vartheta + \vert \psi (\tau )-\varGamma (\tau ) \vert ^{2}} \\ &\hphantom{\varPhi \bigl(\nabla \psi (\tau ), \nabla \varGamma (\tau ), \theta \vartheta \bigr)}=\varPhi \bigl(\psi (\tau ), \varGamma (\tau ), \vartheta \bigr) \end{aligned}$$

and

$$\begin{aligned} \varLambda \bigl(\nabla \psi (\tau ), \nabla \varGamma (\tau ), \theta \vartheta \bigr)&=\sup_{\tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{\theta \vartheta}{\theta \hat{r}+ \vert \nabla \psi (\tau )-\nabla \varGamma (\tau ) \vert ^{2}} \\ &\leq \sup_{\tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{\theta \hat{r}}{\theta \hat{r}+\theta \vert \psi (\tau )-\varGamma (\tau ) \vert ^{2}} \\ &=\sup_{\tau \in [\mathfrak{c}, \mathfrak{a}]} \frac{\hat{r}}{\hat{r}+ \vert \psi (\tau )-\varGamma (\tau ) \vert ^{2}} \\ &=\varOmega \bigl(\psi (\tau ), \varGamma (\tau ), \hat{r} \bigr). \end{aligned}$$

As a result, all of the conditions of Theorem 1 are satisfied and operator has a unique fixed point. □

Example 3

According to equation (12), we consider

$$ \textstyle\begin{cases} \mathcal{D}^{\delta}_{0+} \psi ( \tau ) + \frac{\sqrt{6} \ln ( \tau +1)\cos (\psi ( \tau ))}{\tau ^{2} +1 } = 0,& 0 \leq \tau \leq 1, \\ \psi (0)+\psi{'}(0)=0, \qquad \psi (1)+\psi{'}(1)=0, & \end{cases} $$
(13)

with three cases \(\delta = \{ \frac{25}{19}, \frac{7}{4}, \frac{35}{19} \}\), where \(\mathfrak{g} ( \tau , \psi ( \tau ))= \frac{\sqrt{6} \ln ( \tau +1)\cos (\psi ( \tau ))}{\tau ^{2} +1 }\). Then, for ψ, \(\varGamma \in \varDelta =[0,1]\), we have

$$\begin{aligned} \bigl\vert \mathfrak{g} \bigl( \tau , \psi ( \tau ) \bigr) - \mathfrak{g} \bigl( \tau , \varGamma ( \tau ) \bigr) \bigr\vert ={}& \biggl\vert \frac{\sqrt{6} \ln ( \tau +1)\cos (\psi ( \tau ))}{ \tau ^{2} +1 } \\ &{} - \frac{\sqrt{6} \ln ( \tau +1) \cos (\varGamma ( \tau ) )}{\tau ^{2} +1 } \biggr\vert \\ ={}& \biggl\vert \frac{\sqrt{6} \ln ( \tau +1)}{ \tau ^{2} +1 } \biggr\vert \bigl\vert \cos \bigl(\psi ( \tau ) \bigr)- \cos \bigl(\varGamma ( \tau ) \bigr) \bigr\vert \\ \leq{}& \sqrt{6} \ln 2 \bigl\vert \psi ( \tau )- \varGamma ( \tau ) \bigr\vert = \sqrt{\theta} \bigl\vert \psi ( \tau )- \varGamma ( \tau ) \bigr\vert , \end{aligned}$$

where \(\theta = (\sqrt{6} \ln 2 )^{2}\). Therefore, all the conditions of Theorem 3 are true. Hence, has a unique fixed point.

5 Conclusion

This paper introduced the concept of ENRMS, as well as various new types of fixed point theorems that can be proved in this novel environment. Furthermore, we offered a non-trivial example to show that the proposed solutions are viable. We have complemented our work with an application that shows how the developed approach outperforms the literature-based methods. It is an interesting open problem to prove a coupled fixed point under this space.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Banach, S.: Sur les oprations dans les ensembles abstraits et leurs applications aux equatins integrales. Fundam. Math. 3, 133–181 (1922)

    Article  Google Scholar 

  2. Kirk, W., Shahzad, N.: Fixed Point Theory in Distance Spaces. Springer, Berlin (2014)

    Book  Google Scholar 

  3. Karapınar, E., Agarwal, R.P.: Fixed Point Theory in Generalized Metric Spaces. Synthesis Lectures on Mathematics and Statistics. Springer, Berlin (2022)

    Google Scholar 

  4. Shatanawi, W., Abodayeh, K., Mukheimer, A.: Some fixed point theorems in extended b-metric spaces. Sci. Bull. “Politeh.” Univ. Buchar., Ser. A 80(4), 71–78 (2018)

    MathSciNet  Google Scholar 

  5. Shatanawi, W., Shatnawi, T.A.: Some fixed point results based on contractions of new types for extended b-metric spaces. AIMS Math. 8, 10929–10946 (2023)

    Article  MathSciNet  Google Scholar 

  6. Alamgir, N., Kiran, Q., Aydi, H., Mukheimer, A.: A Mizoguchi-Takahashi type fixed point theorem in complete extended b-metric spaces. Mathematics 7(5), 478 (2019)

    Article  Google Scholar 

  7. Ibrahim, A., Aatef, H., Marin, M.: Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. J. Taibah Univ. Sci. 14, 1369–1376 (2020)

    Article  Google Scholar 

  8. Ashraf, M.Z., Ibrahim, A.A.: Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model. Int. J. Struct. Stab. Dyn. 14(6), 7 (2014)

    MathSciNet  Google Scholar 

  9. Mohamed, I.A.O., Montaser, F., Marin, M.: Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating. Struct. Eng. Mech. 73(6), 621–629 (2020)

    Google Scholar 

  10. Noje, D., Dzitac, I., Pop, N., Tarca, R.: IoT devices signals processing based on shepard local approximation operators defined in Riesz MV-algebras. Informatica 31, 131–142 (2020)

    Article  MathSciNet  Google Scholar 

  11. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  12. Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 314–334 (1960)

    MathSciNet  Google Scholar 

  13. Kramosil, I., Michlek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11, 336–344 (1975)

    MathSciNet  Google Scholar 

  14. Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1988)

    Article  MathSciNet  Google Scholar 

  15. Rehman, S.U., Jabeen, S., Khan, S.U., Jaradat, M.M.M.: Some \(\alpha -\phi \)-fuzzy cone contraction results with integral type application. J. Math. 2021, 1–15 (2021)

    MathSciNet  Google Scholar 

  16. Park, J.H.: Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 22, 1039–1046 (2004)

    Article  MathSciNet  Google Scholar 

  17. Konwar, N.: Extension of fixed results in intuitionistic fuzzy b-metric spaces. J. Intell. Fuzzy Syst. 39, 7831–7841 (2020)

    Article  Google Scholar 

  18. Kirişci, M., Simsek, N.: Neutrosophic metric spaces. Math. Sci. 14, 241–248 (2020)

    Article  MathSciNet  Google Scholar 

  19. Simsek, N., Kirişci, M.: Fixed point theorems in neutrosophic metric spaces. Sigma J. Eng. Nat. Sci. 10, 221–230 (2019)

    Google Scholar 

  20. Sowndrarajan, S., Jeyarama, M., Smarandache, F.: Fixed point results for contraction theorems in neutrosophic metric spaces. Neutrosophic Sets Syst. 36(1), 308–318 (2020)

    Google Scholar 

  21. Itoh, S.: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67, 261–273 (1979)

    Article  MathSciNet  Google Scholar 

  22. Mlaiki, N.: Controlled metric type spaces and the related contraction principle. Mathematics 6, 194 (2018)

    Article  MathSciNet  Google Scholar 

  23. Sezen, M.S.: Controlled fuzzy metric spaces and some related fixed point results. Numer. Methods Partial Differ. Equ. 37, 583–593 (2020)

    Article  MathSciNet  Google Scholar 

  24. Saleem, N., Isik, H., Furqan, S., Park, C.: Fuzzy double controlled metric spaces. J. Intell. Fuzzy Syst. 40, 9977–9985 (2021)

    Article  Google Scholar 

  25. Rafi, M., Noorani, M.S.M.: Fixed theorems on intuitionistic fuzzy metric space. Iran. J. Fuzzy Syst. 3, 23–29 (2006)

    MathSciNet  Google Scholar 

  26. Dey, D., Saha, M.: An extension of Banach fixed point theorem in fuzzy metric space. Bol. Soc. Parana. Mat. 32, 299–304 (2014)

    Article  MathSciNet  Google Scholar 

  27. Uddin, F., Ishtiaq, U., Hussain, A., Javed, K., Al Sulami, H., Ahmed, K.: Neutrosophic double controlled metric spaces and related results with application. Fractal Fract. 6(6), 318 (2022)

    Article  Google Scholar 

  28. Gunaseelan, M., Rajagopalan, R., Arul Joseph, G., Ashour Abdelnaby, O.A., Radojević, S., Radenović, S.: Solution of integral equation with neutrosophic rectangular triple controlled metric spaces. Symmetry 2022, 14 (2074)

    Google Scholar 

  29. Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006, 36 (2006)

    MathSciNet  Google Scholar 

  30. Sintunavarat, W., Kumam, P.: Fixed theorems for a generalized intuitionistic fuzzy contraction in intuitionistic fuzzy metric spaces. Thai J. Math. 10, 123–135 (2012)

    MathSciNet  Google Scholar 

  31. Alaca, C., Turkoglu, D., Yildiz, C.: Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 29, 1073–1078 (2006)

    Article  MathSciNet  Google Scholar 

  32. Javed, K., Uddin, F., Aydi, H., Arshad, M., Ishtiaq, U., Alsamir, H.: On fuzzy b-metric-like spaces. J. Funct. Spaces 2021, 9 (2021)

    MathSciNet  Google Scholar 

  33. Mohamad, A.: Fixed-point theorems in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 34, 1689–1695 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors A. Aloqaily and N. Mlaiki would like to thank Prince Sultan University for paying the APC and for the support through the TAS research lab.

Funding

This research did not receive any external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, G.M., M.A.R.M.A., Z.D.M, A.A, N.M.; formal analysis, G.M., Z.D.M., and N.M.; writing-original draft preparation, G.M., M.A.R.M.A., Z.D.M, A.A, N.M.; writing-review and editing, G.M., M.A.R.M.A., Z.D.M, A.A, N.M.; supervision, G.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zoran D. Mitrović.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, G., Antony, M.A.R.M., Mitrović, Z.D. et al. A fixed point result on an extended neutrosophic rectangular metric space with application. Bound Value Probl 2024, 13 (2024). https://doi.org/10.1186/s13661-024-01820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01820-y

Mathematics Subject Classification

Keywords