Skip to main content

Existence and multiplicity of solutions of fractional differential equations on infinite intervals

Abstract

In this research, we investigate the existence and multiplicity of solutions for fractional differential equations on infinite intervals. By using monotone iteration, we identify two solutions, and the multiplicity of solutions is demonstrated by the Leggett–Williams fixed point theorem.

1 Introduction

Fractional differential equations’ theory has been widely employed in astronomy, biology, economics, and other domains, such as described in [1, 2, 4, 8, 1113, 15, 17, 19, 20, 26]. In recent years, many authors have combined fractional derivative operators with problems of p-Laplacian type, Kirchhoff-type, etc. [2124]. Their work made important contributions to enriching the study of fractional derivative problems. Research has investigated many difficulties of solutions of fractional differential equations on infinite intervals in addition to those on finite intervals.

In [29], the authors studied the BVP

$$\begin{aligned} \textstyle\begin{cases} D^{\nu } w(\zeta )+h(\zeta ,w(\zeta ))=0,\quad \zeta \in ( 0, \infty ) , \nu \in ( 1,2 ) , \\ w(0)=0,\quad \lim_{\zeta \to \infty} D_{0^{+} }^{\nu -1} w(\zeta )= \beta w(\xi ). \end{cases}\displaystyle \end{aligned}$$
(1)

The authors discovered the presence of solutions by employing the Leray–Schauder nonlinear theorem. In [25], Guotao Wang studied the BVP

$$\begin{aligned} \textstyle\begin{cases} D_{0^{+} }^{\delta } w(\varsigma )+k(\varsigma ,w(\varsigma ))=0, \quad 2< \delta \le 3, \\ w (0)={w}'(0)= 0, \\ D^{\delta -1} w(\infty )=\rho I^{\gamma } w(\varrho ),\quad \gamma >0, \end{cases}\displaystyle \end{aligned}$$
(2)

where \(\varsigma \in K=[0,\infty )\), \(k\in C(K\times \mathbb{R},\mathbb{R})\), \(\rho \in \mathbb{R}\), \(\varrho \in K\). The author obtained the existence and uniqueness of solutions by the monotone iterative technique. In [18], the Leggett–Williams fixed point theorem and the Guo–Krasnoselskii fixed point theorem were used by Phollakrit Thiramanus et al. to investigate

$$\begin{aligned} \textstyle\begin{cases} ^{H}D^{\delta } w(\tau )+k(\tau )r(w(\tau ))=0,\quad \delta \in (1,2), \tau \in (1,\infty ), \\ w(1)=0, \\ ^{H}D^{\delta -1} w(\infty )=\sum_{p=1}^{n} \zeta _{p} I^{ \gamma _{p} } w(\upsilon ), \end{cases}\displaystyle \end{aligned}$$
(3)

where \(\upsilon \in (1,\infty )\), \(\gamma _{p}\), \(p=1,\dots ,n\), and \(\zeta _{p}\ge 0\), \(p=1,\dots ,n\) are given constants. In [9], the authors studied the existence of solutions to the problem

$$\begin{aligned} \textstyle\begin{cases} D_{0^{+} }^{\alpha } w(\zeta )+k(\zeta )r(w(\zeta ))=0,\quad \zeta \in ( 0,\infty ) , \\ w(0)={w}'(0)= 0, \\ D^{\alpha -1} w(\infty )=\sum_{i=1}^{n-2} \varsigma _{i} w(\delta _{i} ), \end{cases}\displaystyle \end{aligned}$$
(4)

where \(2<\alpha < 3\), \(0<\delta _{1} <\delta _{2} <\cdots <\delta _{n-2} <\infty \), \(\varsigma _{i} \ge 0\), \(i=1,\dots , n-2\) satisfy \(0<\sum_{i=1}^{n-2} \varsigma _{i} \delta _{i}^{ \alpha -1} <\Gamma (\alpha )\). From the Leggett–Williams fixed point theorem, the existence of at least three positive solutions was demonstrated. In [27], the authors investigated the family of BVPs

$$\begin{aligned} \textstyle\begin{cases} ^{H}D_{1^{+} }^{\alpha } w(\theta )+k(\theta )h(\theta ,w(\theta ))=0, \quad 2< \alpha < 3, \theta \in (1,\infty ), \\ w(1)={w}' (1)=0, \\ ^{H}D_{1^{+} }^{\alpha -1 }w(\infty )=\sum_{m=1}^{p} \alpha _{m} {^{H}I_{1^{+}}^{\gamma _{m} } }w(\upsilon )+b \sum_{n=1}^{q}\delta _{n}w(\zeta _{n} ), \end{cases}\displaystyle \end{aligned}$$
(5)

where \(1<\upsilon <\zeta _{1} <\zeta _{2} <\cdots <\zeta _{p}<\infty \), b, \(\alpha _{m}\), \(\zeta _{n}\ge 0\), \(m=1,\dots ,p\), \(n=1,\dots ,q\) are given constants. Various fixed point theorems were used to prove the results. The generalized Avery–Henderson fixed point theorem was used to demonstrate the presence of many positive solutions to problem (5) in [28].

In this paper, motivated by the previous results, we investigate the BVP

$$\begin{aligned} \textstyle\begin{cases} D^{\delta } x(t)+b(t)r(t,x(t)) = 0, \quad t\in [0,\infty ), m-1< \delta \le m, \\ x^{(n)}(0)=0,\quad n=0,1,\dots ,m-2, \\ D^{\delta -1 } x(\infty ) = \sum_{i = 1}^{q} v_{i} I^{ \beta _{i} } x(\varrho )+\lambda \sum_{j=1}^{p} \kappa _{j} x(\varsigma _{j}) , \end{cases}\displaystyle \end{aligned}$$
(6)

where \(m\ge 2\), \(D^{\delta }\) is the Riemann–Liouville fractional derivative of order δ, \(D^{\delta -1 } x(\infty )=\lim_{t \to \infty} D^{\delta -1 }x(t)\), \(I^{\beta _{j} }\) is the Riemann–Liouville fractional integral of order \(\beta _{i}>0\), \(i=1,2,\dots ,q\), \(0<\varrho <\infty \), \(v_{i}\), λ, \(\kappa _{j}\), \(\varsigma _{j}\ge 0\), \(i=1,\dots ,q\), \(j=1,\dots ,p\) are given constants; \(r:I\times \mathbb{R^{+} } \to \mathbb{R^{+} }\), with \(I=[0,\infty )\), is continuous and \(b:I\to \mathbb{R^{+} } \) is integrable, and

$$\begin{aligned} \Delta =\Gamma (\delta )-\sum_{i=1}^{q} v_{i} \frac{\Gamma (\delta )}{\Gamma (\delta +\beta _{i} )}\varrho ^{ \delta +\beta _{j}-1 }-\lambda \sum _{j=1}^{p}\kappa _{j}\varsigma _{j}^{ \delta -1} \ne 0. \end{aligned}$$

Using the monotone iteration method, we prove that two solutions of problem (6) exist. Using the Leggett–Williams fixed point theorem, we determine that problem (6) has at least three solutions.

Compared with [27, 28], we use different methods to study multiple solutions. Compared with [9, 18, 25, 2729], we study fractional differential equations of arbitrary order \(m\ge 2\). It is obvious that our problem is more general. Our boundary conditions have more general forms and the boundary conditions of [9, 18, 25, 29] are our special cases. When \(m=2\), \(v_{i} =0\), \(\lambda =1\), \(j=1\), we know that problem (1) is a special case of problem (6). When \(m=3\), \(i=1\), \(\lambda =0\), we have that problem (2) is a special case of problem (6). When \(\lambda =0\), we obtain that the boundary conditions of problem (3) are a special case of the boundary conditions of problem (6). When \(m=3\), \(v_{i} =0\), \(\lambda =1\), \(j=1,2,\dots ,p-2\), we get that the boundary conditions of problem (4) are a special case of the boundary conditions of problem (6).

In this paper, the following four conditions will be used:

\((H_{1} )\):

\(r\in C(I\times \mathbb{R^{+} },\mathbb{R^{+} })\) and \(r(t,\cdot )\not \equiv 0\) on any subinterval of \(\mathbb{R^{+} }\), and when x is bounded, \(r(t,(1+t^{\delta -1} )x)\) is bounded on \(\mathbb{R^{+} }\).

\((H_{2} )\):

\(b:I\to \mathbb{R^{+} }\) does not identically vanish on any subinterval of \(\mathbb{R^{+} }\) and

$$\begin{aligned} 0< \int _{0}^{\infty } b(s)\,ds< \infty . \end{aligned}$$
\((H_{3} )\):

r is nondecreasing with respect to the second variable.

\((H_{4} )\):

There exists a positive constant Λ such that

$$\begin{aligned} r\bigl(t,\bigl(1+t^{\delta -1} \bigr)x\bigr)\le \frac{\Lambda }{\frac{1}{\Delta } \int _{0}^{\infty}b(s)\,ds } \quad \text{for any } (t,x)\in [0,\infty )\times [0,\Lambda ]. \end{aligned}$$

Assumptions \((H_{1})\) and \((H_{2})\) will be applied in Lemma 3.2 and Theorem 3.5, while \((H_{1})\)\((H_{4})\) will be used in Theorem 3.4.

The remainder of this article is organized as follows. Section 2 contains the definitions and lemmas required to prove our results. Section 3 presents the existence and multiplicity results for the boundary value problem (6). Section 4 provides examples relevant to the key findings of this paper.

2 Preliminaries

We present several definitions and lemmas here for the reader’s convenience, as they will be utilized to prove our primary results.

Definition 2.1

(see [14, 16])

The Riemann–Liouville fractional derivative of order \(\delta > 0\) of a function \(h : (0, \infty ) \to \mathbb{R}\) is given by

$$\begin{aligned} D^{\delta } h(\varsigma )=\frac{1}{\Gamma (m-\delta )} \biggl( \frac{d}{d\varsigma} \biggr)^{m} \int _{0}^{\varsigma} \frac{h(\eta )}{(\varsigma -\eta )^{\delta -m+1} }\,d\eta , \end{aligned}$$

where \(m-1< \nu \le m\).

Definition 2.2

(see [14, 16])

The Riemann–Liouville fractional integral of order \(\eta > 0\) of a function \(h : (0, \infty ) \to \mathbb{R}\) is given by

$$\begin{aligned} I^{\eta }h(\varrho )=\frac{1}{\Gamma (\eta )} \int _{0}^{\varrho } ( \varrho -\varsigma )^{\eta -1} h(\varsigma )\,d\varsigma . \end{aligned}$$

Lemma 2.3

(see [5])

If \(\varrho ,\theta > 0\), then

$$\begin{aligned}& I^{\varrho } \bigl(t^{\theta } \bigr)= \frac{\Gamma (\theta +1 )}{\Gamma (\varrho +\theta +1 )} t^{\varrho + \theta } , \\& D^{\varrho } \bigl(t^{\theta } \bigr)= \frac{\Gamma (\theta +1)}{\Gamma (\theta -\varrho +1)} t^{\theta - \varrho }. \end{aligned}$$

Lemma 2.4

If \(e \in C([0,\infty ) ,\mathbb{R}) \), then the problem

$$\begin{aligned} \textstyle\begin{cases} D^{\delta } x(t)+e(t) = 0,\quad m-1< \delta \le m, \\ x^{(n)}(0)=0,\quad n=0,1,\dots ,m-2, \\ D^{\delta -1 } x(\infty ) = \sum_{i = 1}^{q} v_{i} I^{ \beta _{i} } x(\varrho )+\lambda \sum_{j=1}^{p} \kappa _{j} x(\varsigma _{j}) \end{cases}\displaystyle \end{aligned}$$
(7)

has a unique solution

$$\begin{aligned} x(t)= \int _{0}^{\infty} \Pi (t,s)e(s)\,ds, \end{aligned}$$

where

$$ \begin{gathered} \Pi (t,s)=\pi (t,s,\delta )+ \frac{t^{\delta -1} }{\Delta } \sum _{i=1}^{q} v_{i} \pi (\varrho ,s, \delta +\beta _{i} )+ \frac{t^{\delta -1} }{\Delta } \lambda \sum _{j=1}^{p} \kappa _{j} \pi (\varsigma _{j} ,s,\delta ), \\ \pi (t,s,\delta )=\frac{1}{\Gamma (\delta )} \textstyle\begin{cases} t^{\delta -1}-(t-s)^{\delta -1} ,&0\le s\le t< \infty , \\ t^{\delta -1},&0\le t\le s< \infty . \end{cases}\displaystyle \end{gathered} $$
(8)

Proof

Since \(D^{\delta } x(t)+e(t) = 0\), we obtain

$$\begin{aligned} x(t)=l_{1} t^{\delta -1} +l_{2} t^{\delta -2}+\cdots +l_{m} t^{ \delta -m}-I^{\delta } e(t). \end{aligned}$$

Due to \(x^{(n)}(0)=0\), \(n=0,\dots ,m-2\), we have \(l_{2} =\cdots =l_{m} =0\), that is,

$$\begin{aligned} x(t)=l_{1} t^{\delta -1}-I^{\delta } e(t). \end{aligned}$$

Since \(D^{\delta -1 } x(\infty ) = \sum_{i = 1}^{q} v_{i} I^{ \beta _{i} } x(\varrho )+\lambda \sum_{j=1}^{p} \kappa _{j} x(\varsigma _{j})\), we have

$$ \begin{aligned} l_{1} &=\frac{1}{\Delta } \int _{0}^{\infty } e(s)\,ds - \frac{\sum_{i=1}^{q}v_{i} }{\Delta \Gamma (\delta +\beta _{i})} \int _{0}^{\varrho } (\varrho -s)^{\delta +\beta _{i}-1}e(s)\,ds \\ &\quad{} -\frac{\lambda}{\Delta }\sum_{j=1}^{p} \kappa _{j} \frac{1}{\Gamma (\delta )} \int _{0}^{\varsigma _{j} } (\varsigma _{j} -s)^{\delta -1}e(s)\,ds \\ &=\frac{1}{\Gamma (\delta )} \int _{0}^{\infty } e(s)\,ds+ \frac{\sum_{i=1}^{q}v_{i} }{\Delta } \int _{0}^{\infty } \pi (\varrho ,s,\delta +\beta _{i})e(s)\,ds \\ &\quad{} +\frac{\lambda}{\Delta } \sum_{j=1}^{p} \kappa _{j} \int _{0}^{\infty }\pi (\varsigma _{j} ,s, \delta )e(s)\,ds . \end{aligned} $$

Then

$$ \begin{aligned} x(t)&= \frac{1}{\Gamma (\delta )} \int _{0}^{\infty } t^{ \delta -1} e(s)\,ds+ \frac{\sum_{i=1}^{q}v_{i}t^{\delta -1}}{\Delta } \int _{0}^{ \infty }\pi (\varrho ,s,\delta +\beta _{i}) e(s)\,ds \\ &\quad{} +\frac{\lambda}{\Delta }t^{\delta -1} \sum_{j=1}^{p} \kappa _{j} \int _{0}^{\infty }\pi (\varsigma _{j} ,s, \delta )e(s)\,ds - \frac{1}{\Gamma (\delta )} \int _{0}^{t}(t-s)^{\delta -1} e(s)\,ds \\ &= \int _{0}^{\infty } \pi (t,s,\delta )e(s)\,ds+ \frac{t^{\delta -1} }{\Delta } \sum_{i=1}^{q} v_{i} \int _{0}^{\infty } \pi (\varrho ,s,\delta +\beta _{i} )e(s)\,ds \\ &\quad{} + \frac{t^{\delta -1} }{\Delta } \lambda \sum_{j=1}^{p} \kappa _{j} \int _{0}^{\infty }\pi (\varsigma _{j} ,s, \delta )e(s)\,ds \\ &= \int _{0}^{\infty} \Pi (t,s)e(s)\,ds. \end{aligned} $$

The proof is complete. □

Lemma 2.5

If \(\Delta >0\), the following properties apply to the Green function \(\Pi (t, s)\) defined by (8) for all \((t,s)\in I\times I\):

  1. (i)

    \(\Pi (t,s)\) is nonnegative and continuous.

  2. (ii)

    \(\Pi (t,s)\) is increasing with respect to t.

  3. (iii)

    \(\frac {\Pi (t,s)}{1+t^{\delta -1} } \le \frac {1}{\Delta } \).

  4. (iv)

    \(\Pi (t,s)\le \frac {1}{\Delta } t^{\delta -1}\).

Proof

(i) According to the definition of \(\Pi (t,s)\), this is clearly true.

(ii) We just have to prove that \(\pi (t,s,\delta )\) increases as t increases. Let

$$\begin{aligned}& \eta _{1}(t)=t^{\delta -1} -(t-s)^{\delta -1}, \quad 0\le s\le t< \infty , \\& \eta _{2} (t)=t^{\delta -1}, \quad 0\le t\le s< \infty . \end{aligned}$$

We have

$$\begin{aligned}& \eta _{1}^{\prime} (t)=(\delta -1)t^{\delta -2} -(\delta -1)(t-s)^{ \delta -2}\ge 0, \\& \eta _{2}^{\prime} (t)=(\delta -1)t^{\delta -2}\ge 0. \end{aligned}$$

Then

$$\eta _{1} (t_{1} )< \eta _{1} (t_{2} ), \qquad \eta _{2} (t_{1} )< \eta _{2} (t_{2} ), \qquad \eta _{2} (t_{1} )\le \eta _{2} (s) = \eta _{1} (s)\le \eta _{1} (t_{2}). $$

(iii) We have

$$\begin{aligned} \frac{\Pi (t,s)}{1+t^{\delta -1} }&= \frac{\pi (t,s,\delta )}{1+t^{\delta -1} } + \frac{t^{\delta -1}}{1+t^{\delta -1} }\frac{1}{\Delta }\sum_{i=1}^{q} v_{i} \pi (\varrho ,s,\delta +\beta _{i}) \\ &\quad{} +\frac{t^{\delta -1}}{1+t^{\delta -1}}\frac{1}{\Delta } \lambda \sum _{j=1}^{p} \kappa _{j} \pi (\varsigma _{j} ,s,\delta ) \\ &\le \frac{1}{\Gamma (\delta )} +\frac{1}{\Delta }\sum_{i=1}^{q} v_{i} \frac{\varrho ^{\delta +\beta _{i}-1} }{\Gamma (\delta +\beta _{i})} + \frac{1}{\Delta } \lambda \sum _{j=1}^{p} \kappa _{j} \frac{\varsigma _{j}^{\delta -1} }{\Gamma (\delta )} \\ &=\frac{1}{\Delta } . \end{aligned}$$
(9)

(iv) We have

$$\begin{aligned} \Pi (t,s)\le t^{\delta -1} \Biggl(\frac{1}{\Gamma (\delta )} + \frac{1}{\Delta }\sum _{i=1}^{q} v_{i} \frac{\varrho ^{\delta +\beta _{i}-1} }{\Gamma (\delta +\beta _{i})} + \frac{1}{\Delta } \lambda \sum_{j=1}^{p} \kappa _{j} \frac{\varsigma _{j}^{\delta -1} }{\Gamma (\delta )} \Biggr) = t^{ \delta -1} \frac{1}{\Delta }. \end{aligned}$$

The proof is complete. □

Let X be a Banach space endowed with norm \(\Vert \cdot \Vert _{X}\). Let \(0 < v < w\) be given, and let ϑ be a nonnegative continuous concave functional on K. Define the convex sets \(K_{\mu } \) and \(K(\vartheta , v, w) \) by \(K_{\mu } = \{ x\in K: \Vert x \Vert _{X}< \mu \} \) and \(K(\vartheta ,v,w)= \{ x\in K:\vartheta (x)\ge v, \Vert x \Vert _{X} \le w \} \).

Lemma 2.6

(see [6])

Let \(H:\overline{K_{\sigma } } \to \overline{K_{\sigma } } \) be a completely continuous operator, and let ϑ be a nonnegative continuous concave functional on K such that \(\vartheta (x)\le \Vert x \Vert \) for all \(x\in \overline{K_{\sigma}} \). Assume there exist \(0 < \tau _{1} < \tau _{2} < \tau _{3} \le \sigma \) such that

\((B_{1})\):

\(\{ x\in K(\vartheta ,\tau _{2} ,\tau _{3} )|\vartheta (x)> \tau _{2} \} \ne \emptyset \) and \(\vartheta (Hx)>\tau _{2} \) for \(x\in K(\vartheta ,\tau _{2} ,\tau _{3} )\);

\((B_{2})\):

\(\Vert Hx \Vert \le \tau _{1} \) for \(\Vert x \Vert \le \tau _{1} \);

\((B_{3})\):

\(\vartheta (Hx)>\tau _{2} \) for \(x\in K(\vartheta ,\tau _{2} ,\sigma )\) with \(\Vert Hx \Vert >\tau _{3} \).

Then H has at least three fixed points \(x_{1}\), \(x_{2}\), and \(x_{3}\) such that

$$ \Vert x_{1} \Vert < \tau _{1},\qquad \varsigma ( x_{2})>\tau _{2}, \qquad \Vert x_{3} \Vert > \tau _{1}, \quad \textit{and}\quad \varsigma (x_{3} )< \tau _{2}. $$

3 Main results

Let \(X= \{ x\in C(I,\mathbb{R^{+} } ):\sup_{t\in I } \frac{ \vert x(t) \vert }{1+t^{\delta -1} } < \infty \} \) be the Banach space with norm \(\Vert x \Vert _{X} = \sup_{t\in I } \frac{ \vert x(t) \vert }{1+t^{\delta -1} } \). We define a cone \(\Upsilon \subset X\) by

$$\begin{aligned} \Upsilon = \bigl\{ x\in X:x(t)\ge 0, \forall t\in I \bigr\} , \end{aligned}$$

and an operator \(\Phi :\Upsilon \to X\) by

$$\begin{aligned} \Phi x(t)= \int _{0}^{\infty } \Pi (t,s)b(s)r\bigl(s,x(s)\bigr)\,ds. \end{aligned}$$
(10)

It is simple to demonstrate that \(\Phi :\Upsilon \to \Upsilon \).

Lemma 3.1

(see [3, 10])

Let \(\Omega \subset X\) be a bounded set. Then Ω is relatively compact in X if the following conditions hold:

  1. (i)

    For any \(x\in \Omega \), \(\frac {x(t)}{1+t^{\alpha -1} } \) is equicontinuous on any compact interval of \([0,\infty )\);

  2. (ii)

    For any \(\varepsilon >0\), there exists a constant \(N>0\) such that

    $$\begin{aligned} \biggl\vert \frac{x(t_{1} )}{1+t_{1 }^{\alpha -1 } }- \frac{x(t_{2} )}{1+t_{2}^{\alpha -1 } } \biggr\vert < \varepsilon \end{aligned}$$

    for any \(t_{1}, t_{2} >N\) and \(x\in \Omega \).

Lemma 3.2

(see [7])

If \((H_{1} )\) and \((H_{2} )\) hold, then \(\Phi :\Upsilon \to \Upsilon \) is completely continuous.

Remark 3.3

To prove that Φx is equiconvergent at infinity, we will give another method. For any \(\varepsilon >0\), there exists a constant \(N_{1}>0\) such that

$$\begin{aligned} 0< \int _{N_{1}}^{\infty } b(s)M_{\lambda}\,ds< \varepsilon , \end{aligned}$$

where

$$\begin{aligned} M_{\lambda} =\sup \bigl\{ r\bigl(s,\bigl(1+s^{\delta -1} \bigr)x \bigr):(s,x)\in I\times [ 0,\lambda ] \bigr\} . \end{aligned}$$

Note

$$\begin{aligned} \lim_{t \to \infty} \frac{t^{\delta -1} }{1+t^{\delta -1}}=1 , \qquad \lim _{t \to \infty} \frac{\pi (t,N_{1},\delta ) }{1+t^{\delta -1}}=0. \end{aligned}$$

Then for the above \(\varepsilon >0\), there exist constants \(N_{2}>0\), \(N_{3}>N_{1}\) such that for any \(t_{1}\), \(t_{2}>N_{2}\), we have

$$\begin{aligned} \biggl\vert \frac{t_{1}^{\delta -1} }{1+t_{1}^{\delta -1} } - \frac{t_{2}^{\delta -1} }{1+t_{2}^{\delta -1} } \biggr\vert \le \biggl\vert 1- \frac{t_{1}^{\delta -1} }{1+t_{1}^{\delta -1} } \biggr\vert + \biggl\vert 1- \frac{t_{2}^{\delta -1} }{1+t_{2}^{\delta -1} } \biggr\vert < \varepsilon \end{aligned}$$

and for any \(t_{1}\), \(t_{2}>N_{3}\), \(0\le s\le N_{1}\), we have

$$\begin{aligned} \biggl\vert \frac{\pi (t_{1},s,\delta ) }{1+t_{1}^{\delta -1} } - \frac{\pi (t_{2},s,\delta ) }{1+t_{2}^{\delta -1} } \biggr\vert \le \biggl\vert \frac{\pi (t_{1},N_{1},\delta ) }{1+t_{1}^{\delta -1} } \biggr\vert + \biggl\vert \frac{\pi (t_{2},N_{1},\delta ) }{1+t_{2}^{\delta -1} } \biggr\vert < \frac{\varepsilon }{\Gamma (\delta )} . \end{aligned}$$

Choose \(N>\max \{ N_{2} ,N_{3} \} \). Then for any \(t_{1}\), \(t_{2}>N\), we have

$$\begin{aligned} \biggl\vert \frac{\Phi {x(t_{1})}}{1+t_{1}^{\delta -1} } - \frac{\Phi x(t_{2})}{1+t_{2}^{\delta -1} } \biggr\vert &\le \int _{0}^{ \infty } \biggl\vert \frac{\Pi (t_{1},s)}{1+t_{1}^{\delta -1} } - \frac{\Pi (t_{2},s)}{1+t_{2}^{\delta -1} } \biggr\vert b(s)r\bigl(s,x(s)\bigr)\,ds \\ &\le \int _{0}^{N_{1}} \biggl\vert \frac{\Pi (t_{1},s)}{1+t_{1}^{\delta -1} } - \frac{\Pi (t_{2},s)}{1+t_{2}^{\delta -1} } \biggr\vert b(s)M_{\lambda}\,ds \\ &\quad + \int _{N_{1}}^{\infty } \biggl\vert \frac{\Pi (t_{1},s)}{1+t_{1}^{\delta -1} } - \frac{\Pi (t_{2},s)}{1+t_{2}^{\delta -1} } \biggr\vert b(s)M_{\lambda}\,ds \\ &< \frac{\varepsilon }{\Delta } \int _{0}^{N_{1}} b(s)M_{\lambda}\,ds + \frac{2 }{\Delta } \int _{N_{1}}^{\infty } b(s)M_{\lambda}\,ds \\ &< \biggl( \frac{1 }{\Delta } \int _{0}^{\infty } b(s)M_{\lambda}\,ds + \frac{2}{\Delta } \biggr) \varepsilon . \end{aligned}$$

Thus, Φx is equiconvergent at infinity.

Theorem 3.4

If \((H_{1})\)\((H_{4})\) hold, then two explicit monotone iterative sequences can yield two positive solutions \(x^{*}\), \(y^{*} \) of problem (6), namely

$$\begin{aligned} \textstyle\begin{cases} x_{n+1} =\int _{0}^{\infty } \Pi (t,s)b(s)r(s,x_{n}(s))\,ds, \quad x_{0}(t)=0, \\ y_{n+1} =\int _{0}^{\infty } \Pi (t,s)b(s)r(s,y_{n}(s))\,ds, \quad y_{0}(t)=\Lambda t^{\delta -1} , t\in I, \Lambda > 0, \end{cases}\displaystyle \end{aligned}$$
(11)

in the interval \((0,\Lambda t^{\delta -1} ]\).

Proof

We define \(W= \{ x\in X: \Vert x \Vert _{X} \le \Lambda \}\), while Φ is defined by (10). Then we show that \(\Phi (W)\subset W\). For any \(x\in W\), by \((H_{4})\) and (9), we have

$$\begin{aligned} \Vert \Phi x \Vert _{X}& =\sup_{t\in I} \int _{0}^{\infty } \frac{\Pi (t,s)}{1+t^{\delta -1} } b(s)r\bigl(s,x(s) \bigr)\,ds \\ &\le \frac{\Lambda }{\frac{1}{\Delta } \int _{0}^{\infty}b(s)\,ds } \frac{1}{\Delta } \int _{0}^{\infty}b(s)\,ds \le \Lambda . \end{aligned}$$

Due to the definition of the operator Φ and assumption \((H_{3})\), we have that Φ is a nondecreasing operator. Define \(x_{0} (t)=0\), \(x_{1} =\Phi x_{0}\), \(x_{2} =\Phi x_{1}=\Phi ^{2}x_{0}\) for any \(t\in I\). In view of \(x_{0} (t)=0\in W\) and \(\Phi (W)\subset W\), we have \(x_{1} \in W\), \(x_{2} \in W\) and

$$\begin{aligned} x_{1} (t)=\Phi x_{0} (t)=\Phi 0(t)\ge 0=x_{0}(t) \quad \text{for any } t\in I. \end{aligned}$$

Considering the nondecreasing nature of the operator Φ, we get

$$\begin{aligned} x_{2} (t)=\Phi x_{1} (t)\ge \Phi x_{0} (t)=x_{1}(t) \quad \text{for any } t\in I. \end{aligned}$$

Define a sequence \(\Phi x_{n} =x_{n+1}\), \(n\in \mathbb{N} \). Clearly, the sequence \(\{ x_{n} \} _{n=1}^{\infty } \subset W\) and it satisfies

$$\begin{aligned} x_{n+1} (t)\ge x_{n} (t)\quad \text{for any } t\in I, n\in \mathbb{N}\mathbbm{.} \end{aligned}$$
(12)

Because of the complete continuity of the operator Φ, there exists a subsequence \(\{ x_{n_{k} } \} _{k=1}^{\infty } \subset W\), \(x^{*} \subset W\) such that \(x_{n_{k} }\to x^{*}\), \(k\to \infty \). This, together with the monotone nature of \(\{ x_{n} \} _{n=1}^{\infty } \), implies that \(\lim_{n \to \infty} x_{n} =x^{*} \). Since Φ is continuous and \(\Phi x_{n} =x_{n+1}\), we have \(\Phi x^{*} =x^{*} \), i.e., \(x^{*}\) is a fixed point of the operator Φ.

Define \(y_{0} (t)=\Lambda t^{\alpha -1}\), \(y_{1} =\Phi y_{0}\), \(y_{2} =\Phi y_{1} =\Phi ^{2} y_{0}\) for any \(t\in I\). In view of \(y_{0} (t)=\Lambda t^{\alpha -1} \in W\) and \(\Phi (W)\subset W\), we have \(y_{1}\in W\), \(y_{2} \in W\). By Lemma 2.5 and \((H_{4})\), we obtain

$$\begin{aligned} y_{1} (t) &=\Phi y_{0} (t)= \int _{0}^{\infty } \Pi (t,s)b(s)r\bigl(s,y_{0}(s)\bigr)\,ds \\ &\le \int _{0}^{\infty } t^{\delta -1}b(s)\frac{1}{\Delta } \frac{\Lambda }{\frac{1}{\Delta } \int _{0}^{\infty}b(s)\,ds } \,ds \\ &\le \Lambda t^{\delta -1}=y_{0} (t). \end{aligned}$$

Due to the nondecreasing nature of the operator Φ, we have

$$\begin{aligned} y_{2} (t)=\Phi y_{1} (t)\le \Phi y_{0} (t)=y_{1}(t) \quad \text{for any} \ t\in I. \end{aligned}$$

Define a sequence \(\Phi y_{n} =y_{n+1}\), \(n\in \mathbb{N}\). Clearly, the sequence \(\{ y_{n} \} _{n=1}^{\infty } \subset W\) and it satisfies

$$\begin{aligned} y_{n+1} (t)\le y_{n} (t)\quad \text{for any } t\in I, n\in \mathbb{N}. \end{aligned}$$
(13)

As before, we can conclude that there exists \(y^{*} \in W\) such that \(\lim_{n \to \infty} y_{n} =y^{*}\). Since Φ is continuous and \(\Phi y_{n} =y_{n+1}\), we have \(\Phi y^{*} =y^{*} \), i.e., \(y^{*}\) is a fixed point of the operator Φ.

Since for any \(t\in I\), \(r(t,\cdot )\not \equiv 0\), 0 is not a solution of problem (6). According to the above process, we know that \(x^{*}\) and \(y^{*} \) are two positive solutions of problem (6) in \((0,\Lambda t^{\delta -1} ]\), which can be established using two explicit monotonic iterative sequences (11), respectively. □

Theorem 3.5

If \((H_{1})\), \((H_{2})\) hold, then there exist numbers \(\delta _{1}\), \(\delta _{2}\), \(\delta _{3}>0\), and \(0< \theta < 1\) such that \(0< \delta _{1}< \delta _{2} <\frac{\delta _{2}}{\theta } \le \delta _{3}\). In addition, assume

\((A_{1})\):

\(r(t,(1+t^{\delta -1})x)\le \delta _{3}M_{1} \), \((t,x)\in I\times [ 0,\delta _{3} ] \), where \(M_{1} = ( \frac{1}{\Delta } \int _{0}^{\infty }b(s)\,ds ) ^{-1}\);

\((A_{2})\):

\(r(t,(1+t^{\delta -1})x)\le \delta _{1}M_{1} \), \((t,x)\in I\times [ 0,\delta _{1} ] \);

\((A_{3})\):

\(r(t,(1+t^{\delta -1})x)\ge \delta _{2}M_{2} \), \((t,x)\in [ \frac{1}{k} ,k ] \times [ \delta _{2},\delta _{3} ] \), where \(M_{2} = ( \frac{k^{1-\delta } }{1+k^{\delta -1} } \int _{ \frac{1}{k} }^{k}b(s)\,ds ) ^{-1}\).

Then problem (6) has at least three positive solutions \(x_{1}^{*}\), \(x_{2}^{*}\), and \(x_{3}^{*}\) such that

$$ \bigl\Vert x_{1}^{*} \bigr\Vert _{X} \le \delta _{1},\qquad \omega \bigl( x_{2}^{*}\bigr) \ge \delta _{2} , \qquad \bigl\Vert x_{3}^{*} \bigr\Vert _{X} \ge \delta _{1}, \quad \textit{and} \quad \omega \bigl(x_{3}^{*} \bigr)< \delta _{2}. $$

Proof

Let \(k>1\), \(\omega (x)=\min_{t\in [ \frac{1}{k} ,k ] } \frac{x(t)}{1+t^{\delta -1} } \), while Φ is defined by (10). The proof will be broken down into four steps.

Step 1.

For any \(x\in \overline{\Upsilon _{\delta _{3}} } \), by the condition \((A_{1} )\) and (9), we have

$$\begin{aligned} \Vert \Phi x \Vert _{X} &=\sup_{t\in I} \int _{0}^{\infty } \frac{\Pi (t,s)}{1+t^{\delta -1} } b(s)r\bigl(s,x(s) \bigr)\,ds \\ &=\sup_{t\in I} \int _{0}^{\infty } \frac{\Pi (t,s)}{1+t^{\delta -1} } b(s)r \biggl(s, \bigl(1+s^{\delta -1}\bigr) \frac{x(s)}{1+s^{\delta -1}} \biggr)\,ds \\ &\le \delta _{3}M_{1} \sup_{t\in I} \int _{0}^{\infty } \frac{\Pi (t,s)}{1+t^{\delta -1} }b(s)\,ds \\ &\le \delta _{3}M_{1} \frac{1}{\Delta } \int _{0}^{\infty } b(s)\,ds= \delta _{3}. \end{aligned}$$

Then \(\Phi :\overline{\Upsilon _{\delta _{3}} } \to \overline{\Upsilon _{\delta _{3}} } \). According to Lemma 3.2, we get that \(\Phi :\overline{\Upsilon _{\delta _{3}} } \to \overline{\Upsilon _{\delta _{3}} } \) is completely continuous.

Step 2.

Let \(x_{0}(t)=0.5 (\delta _{2}+\frac{\delta _{2}}{\theta } ) (1+t^{\delta -1} ) \), then we obtain that

$$ \omega (x_{0})=0.5 \biggl(\delta _{2}+\frac{\delta _{2}}{\theta } \biggr)> \delta _{2} $$

and

$$ \Vert x_{0} \Vert _{X} =0.5 \biggl(\delta _{2}+ \frac{\delta _{2}}{\theta } \biggr)< \frac{\delta _{2}}{\theta }, $$

which shows that

$$ x_{0}\in \biggl\{ x\in \Upsilon \biggl(\omega ,\delta _{2}, \frac{\delta _{2}}{\theta } \biggr)\Big| \omega (x)>\delta _{2} \biggr\} , $$

and thus

$$ \biggl\{ x\in \Upsilon \biggl(\omega ,\delta _{2}, \frac{\delta _{2}}{\theta } \biggr)\Big| \omega (x)>\delta _{2} \biggr\} \ne \emptyset . $$

By the condition \((A_{3} )\), Lemma 2.5, and (8), for any \(x\in \Upsilon (\omega ,\delta _{2},\frac{\delta _{2}}{\theta } )\), we have

$$\begin{aligned} \omega (\Phi x)&=\min_{t\in [ \frac{1}{k} ,k ] } \int _{0}^{ \infty } \frac{\Pi (t,s)}{1+t^{\delta -1} }b(s)r\bigl(s,x(s) \bigr)\,ds \\ &=\min_{t\in [ \frac{1}{k} ,k ] } \int _{0}^{\infty } \frac{\Pi (t,s)}{1+t^{\delta -1} }b(s)r \biggl(s, \bigl(1+s^{\delta -1}\bigr) \frac{x(s)}{1+s^{\delta -1}} \biggr)\,ds \\ &\ge \int _{0}^{\infty } \min_{t\in [ \frac{1}{k} ,k ] } \frac{\Pi (t,s)}{1+t^{\delta -1} }b(s)r \biggl(s,\bigl(1+s^{\delta -1}\bigr) \frac{x(s)}{1+s^{\delta -1}} \biggr)\,ds \\ &>\delta _{2}M_{2} \int _{\frac{1}{k}}^{k} \frac{\pi (\frac{1}{k},s,\delta )}{1+k^{\delta -1} }b(s)\,ds =\delta_{2}. \end{aligned}$$
(14)

Step 3.

By the condition \((A_{2} )\) and (9), we have

$$\begin{aligned} \Vert \Phi x \Vert _{X}& =\sup_{t\in I} \int _{0}^{\infty } \frac{\Pi (t,s)}{1+t^{\delta -1} } b(s)r\bigl(s,x(s) \bigr)\,ds \\ & =\sup_{t\in I} \int _{0}^{\infty } \frac{\Pi (t,s)}{1+t^{\delta -1} } b(s)r \biggl(s, \bigl(1+s^{\delta -1}\bigr) \frac{x(s)}{1+s^{\delta -1}} \biggr)\,ds \\ &\le \delta _{1}M_{1} \frac{1}{\Delta } \int _{0}^{\infty } b(s)\,ds= \delta _{1}. \end{aligned}$$

Step 4.

Similar to (14), for any \(x\in \Upsilon (\omega ,\delta _{2},\delta _{3})\) and \(\Vert \Phi x \Vert _{X} > \frac{\delta _{2}}{\theta } \), by condition \((A_{3} )\), Lemma 2.5, and (8), we have \(\omega (\Phi x)>\delta _{2}\).

Conclusion.

Thus, by Lemma 2.6, problem (6) has at least three positive solutions \(x_{1}^{*}\), \(x_{2}^{*}\), and \(x_{3}^{*}\) such that \(\Vert x_{1}^{*} \Vert _{X} \le \delta _{1}\), \(\omega ( x_{2}^{*})\ge \delta _{2} \), \(\Vert x_{3}^{*} \Vert _{X} \ge \delta _{1}\), and \(\omega (x_{3}^{*} )< \delta _{2}\). □

4 Examples

Example 4.1

We consider the problem

$$\begin{aligned} \textstyle\begin{cases} D^{\frac{3}{2} } x(t)+\frac{1}{(1+t)^{2} } r(t,x(t))=0,\quad t\in [0, \infty ), \\ x(0)=0, \\ D^{\frac{1}{2} } x(\infty )=\sum_{i=1}^{2} v_{i} I^{ \beta _{i} } x(\varrho )+\lambda \kappa x (\varsigma ^{ \frac{1}{2} } ) , \end{cases}\displaystyle \end{aligned}$$
(15)

where

$$\begin{aligned}& \delta =\frac{3}{2},\qquad m=2,\qquad q=2,\qquad p=1,\qquad v_{1} =1, \qquad v_{2} =\frac{1}{2},\qquad \Lambda =1, \\& \beta _{1} =\frac{1}{2},\qquad \beta _{2} = \frac{1}{4},\qquad \varrho = \frac{1}{2},\qquad \lambda = \frac{1}{100},\qquad \kappa =1,\qquad \varsigma =\frac{1}{3}, \end{aligned}$$

and

$$\begin{aligned}& r\bigl(t,x(t)\bigr)=\frac{x(t)}{10(1+t^{\frac{1}{2} }) }, \\& b(t)=\frac{1}{(1+t)^{2} }. \end{aligned}$$

We can show that

$$\begin{aligned} \Delta =\Gamma \biggl(\frac{3}{2} \biggr)-\sum _{i=1}^{2} v_{i} \frac{\Gamma (\frac{3}{2} )}{\Gamma (\frac{3}{2}+\beta _{i})} \varrho ^{\frac{3}{2}+\beta _{i}-1}-\frac{1}{100} \frac{1}{3}^{ \frac{1}{2} } \approx 0.2219> 0. \end{aligned}$$

When \(x\in [0,1]\), we have

$$\begin{aligned} r\bigl(t,\bigl(1+t^{\frac{1}{2} } \bigr)x\bigr)\le \frac{1}{10} < \frac{1 }{\frac{1}{\Delta } \int _{0}^{\infty}c(s)\,ds }\approx 0.2219< 1 . \end{aligned}$$

Thus, we have that \((H_{1} )\)\((H_{4} )\) hold. We can obtain that problem (15) has two positive solutions \(x^{*}\), \(y^{*} \) in \((0, t^{\alpha -1} ]\) by Theorem 3.4, which can be approximated by the iterative sequences

$$\begin{aligned} \textstyle\begin{cases} x_{n+1} =\int _{0}^{\infty } \Pi (t,s)b(s)r(s,x_{n}(s))\,ds, \quad x_{0}(t)=0, \\ y_{n+1} =\int _{0}^{\infty } \Pi (t,s)b(s)r(s,y_{n}(s))\,ds, \quad y_{0}(t)=t^{\delta -1} , t\in I. \end{cases}\displaystyle \end{aligned}$$

Example 4.2

We consider the problem

$$\begin{aligned} \textstyle\begin{cases} D^{\frac{5}{2} } x(t)+e^{-t} r(t,x(t))=0,\quad t\in [0,\infty ), \\ x(0)={x}' (0)=0, \\ D^{\frac{3}{2} } x(\infty )=\sum_{i=1}^{2} v_{i} I^{ \beta _{i} } x(\varrho )+\lambda \kappa x (\varsigma ^{ \frac{3}{2} } ), \end{cases}\displaystyle \end{aligned}$$
(16)

where

$$\begin{aligned}& \delta =\frac{5}{2},\qquad m=3,\qquad q=2,\qquad p=1,\qquad v_{1} = \frac{1}{3},\qquad v_{2} =\frac{1}{4},\qquad \\& \beta_{1} =\frac{1}{2}, \qquad \beta _{2} = \frac{1}{4},\qquad \varrho =\frac{1}{4},\qquad k=2,\qquad \lambda =\frac{1}{20},\qquad \kappa =\frac{1}{50},\qquad \varsigma =1, \end{aligned}$$

and

$$\begin{aligned}& r(t,x)=\textstyle\begin{cases}\frac{x}{(1+t^{\frac{3}{2} })(1+t) } ,& x< 1, \\ \frac{t}{e^{t} } +\frac{x}{1+t^{\frac{3}{2} } } +15, & x\ge 1, \end{cases}\displaystyle \\& b(t)=e^{-t}. \end{aligned}$$

We have

$$\begin{aligned}& M_{1} = \biggl( \frac{1}{\Delta } \int _{0}^{\infty }b(s)\,ds \biggr) ^{-1} \approx 1.281>1, \\& M_{2} = \biggl( \frac{k^{1-\alpha } }{1+k^{\alpha -1} } \int _{ \frac{1}{k} }^{k}b(s)\,ds \biggr) ^{-1}\approx 11.7055. \end{aligned}$$

Choosing \(\delta _{1}=\frac{1}{2}\), \(\delta _{2}=1.01\), \(\delta _{3}=101\), \(\theta =\frac{1}{10} \), we have

$$\begin{aligned}& r\bigl(t,\bigl(1+t^{\frac{3}{2} }\bigr) x\bigr)\le \frac{1}{2}\le \delta _{1}M_{1} \approx 0.6405,\quad (t,x)\in [0,\infty )\times \biggl[0,\frac{1}{2} \biggr], \\& r\bigl(t,\bigl(1+t^{\frac{3}{2} }\bigr) x\bigr)\ge 16\ge \delta _{2}M_{2}\approx 11.822555, \quad (t,x)\in \biggl[ \frac{1}{2} ,2 \biggr]\times [1.01,101], \\& r\bigl(t,\bigl(1+t^{\frac{3}{2} }\bigr) x\bigr)\le 113.369\le \delta _{3}M_{1} \approx 129.381, \quad (t,x)\in [0,\infty )\times [0,101]. \end{aligned}$$

From Theorem 3.5, the BVP (16) has at least three positive solutions \(x_{1}^{*}\), \(x_{2}^{*}\), and \(x_{3}^{*}\) such that \(\Vert x_{1}^{*} \Vert _{X} \le \frac{1}{2} \), \(\omega ( x_{2}^{*})\ge 1.01 \), \(\Vert x_{3}^{*} \Vert _{X} \ge \frac{1}{2} \), and \(\omega (x_{3}^{*} )< 1.01\).

Availability of data and materials

Date sharing not applicable to this paper as no datasets were generated or analyzed during the current study.

References

  1. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua, and Chen systems. Phys. Lett. A 358(1), 1–4 (2006)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  2. Bouteraa, N., Mustafa Inc, Hashemi, M.S., Benaicha, S.: Study on the existence and nonexistence of solutions for a class of nonlinear Erdélyi–Kober type fractional differential equation on unbounded domain. J. Geom. Phys. 178, 104546 (2022)

    Article  Google Scholar 

  3. Corduneanu, C.: Integral Equations and Stability of Feedback Systems. Academic Press, San Diego (1973)

    Google Scholar 

  4. Jin, T., Yang, X.: Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market. Math. Comput. Simul. 190, 203–221 (2021)

    Article  MathSciNet  Google Scholar 

  5. Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  6. Leggett, R.W., Williams, L.R.: A fixed point theorem with application to an infectious disease model. J. Math. Anal. Appl. 76(1), 91–97 (1980)

    Article  MathSciNet  Google Scholar 

  7. Li, X., Liu, X., Jia, M., Zhang, L.: The positive solutions of infinite-point boundary value problem of fractional differential equations on the infinite interval. Adv. Differ. Equ. 2017(1), 126 (2017)

    Article  MathSciNet  Google Scholar 

  8. Li, X.P., Alrihieli, H.F., Algehyne, E.A., Khan, M.A., Alshahrani, M.Y., Alraey, Y., Riaz, M.B.: Application of piecewise fractional differential equation to COVID-19 infection dynamics. Results Phys., 105685 (2022)

  9. Liang, S., Zhang, J.: Existence of three positive solutions of m-point boundary value problems for some nonlinear fractional differential equations on an infinite interval. Comput. Math. Appl. 61(11), 3343–3354 (2011)

    Article  MathSciNet  Google Scholar 

  10. Liu, Y.: Boundary value problem for second order differential equations on unbounded domain. Acta Anal. Funct. Appl. 4(3), 211–216 (2002)

    MathSciNet  Google Scholar 

  11. Lu, B.: Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys. Lett. A 376(28), 2045–2048 (2012)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  12. Ma, W., Jin, M., Liu, Y., Xu, X.: Empirical analysis of fractional differential equations model for relationship between enterprise management and financial performance. Chaos Solitons Fractals 125, 17–23 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  13. Ma, Y., Li, W.: Application and research of fractional differential equations in dynamic analysis of supply chain financial chaotic system. Chaos Solitons Fractals 130, 109417 (2020)

    Article  MathSciNet  Google Scholar 

  14. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    Google Scholar 

  15. Patade, J.: Series solution of system of fractional order Ambartsumian equations: Application in astronomy (2020). arXiv preprint. arXiv:2008.04904

  16. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering (1999)

    Google Scholar 

  17. Sarwar, S., Iqbal, S.: Stability analysis, dynamical behavior and analytical solutions of nonlinear fractional differential system arising in chemical reaction. Chin. J. Phys. 56(1), 374–384 (2018)

    Article  MathSciNet  CAS  Google Scholar 

  18. Thiramanus, P., Ntouyas, S.K., Tariboon, J.: Positive solutions for Hadamard fractional differential equations on infinite domain. Adv. Differ. Equ. 2016, 83 (2016)

    Article  MathSciNet  Google Scholar 

  19. Thirumalai, S., Seshadri, R., Yuzbasi, S.: Spectral solutions of fractional differential equations modelling combined drug therapy for HIV infection. Chaos Solitons Fractals 151, 111234 (2021)

    Article  MathSciNet  Google Scholar 

  20. Turab, A., Rosli, N.: Study of fractional differential equations emerging in the theory of chemical graphs: a robust approach. Mathematics 10(22), 4222 (2022)

    Article  Google Scholar 

  21. Vanterler da Costa, J., Capelas de Oliveira, E.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  22. Vanterler da Costa Sousa, J., Kucche, K.D., Nieto, J.J.: Existence and multiplicity of solutions for fractional \(\kappa(\xi)\)-Kirchhoff-type equation. In: Qualitative Theory of Dynamical Systems (2023)

    Google Scholar 

  23. Vanterler da Costa Sousa, J., Lima, K.B., Tavares, L.S.: Existence of solutions for a singular double phase problem involving a ψ-Hilfer fractional operator via Nehari manifold. Qual. Theory Dyn. Syst. 22, 1–26 (2023)

    MathSciNet  Google Scholar 

  24. Vanterler da Costa Sousa, J., Oliveira, D.S., Agarwal, R.: Existence and multiplicity for fractional Dirichlet problem with \(\gamma (\xi )\)-Laplacian equation and Nehari manifold. Appl. Anal. Discrete Math. (2023)

  25. Wang, G.: Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval. Appl. Math. Lett. 47, 1–7 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  26. Yu, Y.J., Zhao, L.J.: Fractional thermoelasticity revisited with new definitions of fractional derivative. Eur. J. Mech. A, Solids 84, 104043 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  27. Zhang, W., Liu, W.: Existence, uniqueness, and multiplicity results on positive solutions for a class of Hadamard-type fractional boundary value problem on an infinite interval. Math. Methods Appl. Sci. 43(5), 2251–2275 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  28. Zhang, W., Ni, J.: New multiple positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval. Appl. Math. Lett. 118, 107165 (2021)

    Article  MathSciNet  Google Scholar 

  29. Zhao, X., Ge, W.: Unbounded solutions for a fractional boundary value problems on the infinite interval. Acta Appl. Math. 109(2), 495–505 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for pertinent comments and valuable suggestions.

Funding

This research is supported by NSFC (11871302), the Fund of the Natural Science of Shandong Province (ZR2014AM034), and colleges and universities of Shandong province science and technology plan projects (J13LI01).

Author information

Authors and Affiliations

Authors

Contributions

AII authors have equal contributions. AII authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhaocai Hao.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Hao, Z. & Bohner, M. Existence and multiplicity of solutions of fractional differential equations on infinite intervals. Bound Value Probl 2024, 26 (2024). https://doi.org/10.1186/s13661-024-01832-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01832-8

Keywords