Skip to main content

Positive solutions for a semipositone anisotropic p-Laplacian problem

Abstract

In this paper, a semipositone anisotropic p-Laplacian problem

$$ -\Delta _{\overrightarrow{p}}u=\lambda f(u), $$

on a bounded domain with the Dirchlet boundary condition is considered, where \(A(u^{q}-1)\leq f(u)\leq B(u^{q}-1)\) for \(u>0\), \(f(0)<0\) and \(f(u)=0\) for \(u\leq -1\). It is proved that there exists \(\lambda ^{*}>0\) such that if \(\lambda \in (0,\lambda ^{*})\), then the problem has a positive weak solution \(u_{\lambda}\in L^{\infty}(\overline{\Omega})\) via combining Mountain-Pass arguments, comparison principles, and regularity principles.

1 Introduction

Mathematically, a positione is a particular kind of eigenvalue problem involving a nonlinear function on the reals that is continuous, positive, and monotone. A semipositone is an eigenvalue problem that would be a positone eigenvalue problem except that the nonlinear function is not positive when its argument is zero.

Semipositone problems naturally arise in various studies. For example, consider the Rozenwig–McArthur equations in the analysis of competing species where “harvesting” takes place. The study of positive solutions to these problems, unlike the positone case, turns into a nontrivial question as 0 is not a subsolution, making the method of sub-supersolutions difficult to apply. Semipositone problems, again unlike positone problems, give rise to the interesting phenomenon of symmetry breaking (see [8]).

Consider the nonlinear eigenvalue problems of the form

$$ \textstyle\begin{cases} -\Delta _{p}u=\lambda f(u)&\text{in } \Omega , \\ u=0&\text{on } \partial \Omega . \end{cases} $$
(1.1)

When f is positive and monotone, it is referred to in the literature as a positone problem. The case where f satisfies, \(f(0) < 0\), f is monotone and eventually positive, is referred to in the literature as a semipositone problem. The study of positive solutions to semipostone problems is considerably more challenging, since the range of a solution must include regions where f is negative as well as where f is positive. The study of semipositone problems was first formally introduced by Castro et al. in 1988 (see [7]) in the case of Dirichlet boundary conditions, where several challenging differences were noted in their study when compared to the study of positone problems.

Perera et al. [16] consider the p-superlinear semipositone p-Laplacian problem

$$ \textstyle\begin{cases} -\Delta _{p}u=u^{q-1}-\mu &\text{in } \Omega , \\ u>0&\text{in } \Omega , \\ u=0&\text{on } \partial \Omega \end{cases} $$

and proved the the existence of ground-state positive solutions (see [46, 9] for other cases).

Alves et al. [2] prove the existence of a solution for the class of the semipositone problem

$$ \textstyle\begin{cases} -\Delta u =h(x)(f(u)-a)&\text{in } \mathbb{R}^{N}, \\ u>0&\text{in } \mathbb{R}^{N}, \end{cases} $$

via the variational method together with estimates that involve the Riesz potential (see also [1, 10, 11, 21]).

Fu et al. [14] prove the existence of positive solutions for a class of semipositone problems with singular Trudinger–Moser nonlinearities. The proof is based on compactness and regularity arguments.

Castro et al. [6] study the existence of positive weak solutions to the problem (1.1). Here, we refer to [6] and study the existence of positive weak solutions to the problem

$$ \textstyle\begin{cases} -\Delta _{\overrightarrow{p}}u=\lambda f(u)&\text{in } \Omega , \\ u=0&\text{on } \partial \Omega , \end{cases} $$
(1.2)

where \(-\Delta _{\overrightarrow{p}}\) is the anisotropic p-Laplace operator, Ω is an open smooth bounded domain in \(\mathbb{R}^{N}\), \(N\geq 2\) and the function \(f:\mathbb{R}\to \mathbb{R}\) is a differentiable function with \(f(0)<0\) (semipositone), which implies that \(u = 0\) is not a subsolution to (1.2), making the finding of positive solutions rather challenging (see [15]).

We set \(\overrightarrow{p}:=(p_{1},\ldots , p_{N})\), where

$$ \begin{gathered} 1< p_{1}, p_{2},\ldots ,p_{N},\quad \sum^{N}_{i=1} \frac{1}{p_{i}}>1, \end{gathered} $$

\(p_{+}:=\max \{p_{i}: i=1,\ldots , N\}\) and \(p_{-}:=\min \{p_{i}: i=1,\ldots , N\}\).

Let denote the harmonic means \(\overline{p}= N/ (\sum^{N}_{i=1}\frac{1}{p_{i}} )\), and define

$$ \begin{aligned} p^{\star }:= \frac{N}{ (\sum^{N}_{i=1}\frac{1}{p_{i}} )-1}= \frac{N\overline{p}}{N-\overline{p}} \quad \text{and}\quad p_{\infty}:=\max \bigl\{ p_{+},p^{\star }\bigr\} . \end{aligned} $$

Here and after, we assume \(p_{+}< p^{\star}\). Thus, \(p_{\infty}=p^{\star}\):

\((H_{1})\):

Suppose there exist \(q\in (p_{+}-1,p^{\star}-1)\), \(A>0\), \(B>0\) such that

$$ \textstyle\begin{cases} A(u^{q}-1)\leq f(u)\leq B(u^{q}-1)&\text{for } u>0, \\ f(u)=0&\text{for } u\leq -1. \end{cases} $$
(1.3)
\((H_{2})\):

Assume an Ambrosetti–Rabinowitz-type condition, i.e., that there exist \(\theta >p_{+}\) and \(M\in \mathbb{R}\) such that

$$ uf(u)\geq \theta F(u)+M, $$
(1.4)

where

$$ F(u)= \int _{0}^{u}f(s)\,ds . $$

Remark 1.1

Equation (1.3) implies that there exist positive real numbers \(A_{1}\), \(B_{1}\) such that

$$ F(u)\leq B_{1}\bigl( \vert u \vert ^{q+1}+1\bigr)\quad \text{for all } u\in \mathbb{R} $$
(1.5)

and

$$ F(u)\geq A_{1}\bigl( \vert u \vert ^{q+1}+1\bigr)\quad \text{for all } u\in \mathbb{R}. $$
(1.6)

With respect to the above, the main result of this paper is Theorem 1.2. Our result extends the result of [5, Theorem 1.1] and [6, Theorem 1.1].

Theorem 1.2

There exists \(\lambda ^{*}>0\) such that if \(\lambda \in (0,\lambda ^{*})\), then the problem (1.2) has a positive weak solution \(u_{\lambda}\in L^{\infty}(\overline{\Omega})\).

The rest of the paper is organized as follows. In Sect. 2, the suitable function space that is the anisotropic Sobolev space is recalled and necessary facts are also recalled. In Sect. 3, we study the Mountain-Pass Theorem and Palais–Smale condition for the problem. In Sect. 4, we present the proof of the main result, Theorem 1.2, which shows the existence of a positive solution of the problem (1.2).

2 Function spaces

Here, we define the anisotropic Sobolev spaces (see [1820] and references therein), to which the solutions for our problems naturally belong, by

$$ \textstyle\begin{cases} W^{1,\overrightarrow{p}} (\Omega ):= \{u\in W^{1,1}(\Omega ): \int _{\Omega } \vert \frac{\partial u}{\partial x_{i}} \vert ^{p_{i}}< \infty , i=1,\ldots , N \}, \\ W^{1,\overrightarrow{p}}_{0}(\Omega )=W^{1,\overrightarrow{p}}( \Omega )\cap W^{1,1}_{0}(\Omega ) \end{cases} $$
(2.1)

with the norm

$$ \Vert u \Vert _{W^{1,\overrightarrow{p}}(\Omega )}:= \int _{ \Omega } \bigl\vert u(x) \bigr\vert \,dx +\sum _{i=1}^{N} \biggl( \int _{\Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}}. $$

We consider \(W^{1,\overrightarrow{p}}_{0}(\Omega )\) endowed with the norm

$$ \begin{aligned} \Vert u \Vert _{W^{1,\overrightarrow{p}}_{0}(\Omega )}&:=\sum _{i=1}^{N} \biggl( \int _{\Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}} \\ &=\sum_{i=1}^{N} \Vert u \Vert _{W^{1,p_{i}}_{0}(\Omega )}. \end{aligned} $$

We recall the following theorem [13, Theorem 1].

Theorem 2.1

Let \(\Omega \subset \mathbb{R}^{N}\) be an open bounded domain with a Lipschitz boundary. If

$$ p_{i}>1, \quad \textit{for all } i=1,\ldots ,N,\qquad \sum _{i=1}^{N} \frac{1}{p_{i}}>1, $$

then for all \(r\in [1,p^{*}]\), there is a continuous embedding \(W_{0}^{1,\overrightarrow{p}}(\Omega )\subset L^{r}(\Omega )\). For \(r< p^{*}\), the embedding is compact.

Definition 2.2

An element \(u\in W_{0}^{1,\overrightarrow{p}}(\Omega )\) is called a weak solution to (1.2), if

$$ \sum_{i=1}^{N} \int _{\Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}-2} \frac{\partial u}{\partial x_{i}}\frac{\partial \phi}{\partial x_{i}}\,dx = \lambda \int _{\Omega }f(u)\phi \,dx $$
(2.2)

for all \(\phi \in W_{0}^{1,\overrightarrow{p}}(\Omega )\).

Associated to (1.2) we have the functional \(J_{\lambda}:W_{0}^{1,\overrightarrow{p}}(\Omega )\to \mathbb{R}\) defined by

$$ J_{\lambda}(u):=\sum_{i=1}^{N} \frac{1}{p_{i}} \int _{\Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx -\lambda \int _{\Omega }F\bigl(u(x)\bigr) \,dx . $$
(2.3)

Remark 2.3

\(J_{\lambda}\) is a functional of class \(C^{1}\) and the critical points of the functional \(J_{\lambda}\) are the weak solutions of (1.2) (see [17] for a similar argument).

By the Mountain-Pass Theorem we can prove the existence of one solution of (1.2) and then we show for the proper value of λ that the solution is positive.

3 Mountain-Pass Theorem and Palais–Smale condition

The next two lemmas prove that \(J_{\lambda}\) satisfies the geometric hypotheses of the Mountain-Pass Theorem.

Lemma 3.1

Assume \(\phi \in W_{0}^{1,\overrightarrow{p}}(\Omega )\) denotes a positive differentiable function with \(\|\phi \|_{W_{0}^{1,\overrightarrow{p}}(\Omega )}=1\). There exists \(\lambda _{1}>0\) such that if \(\lambda \in (0,\lambda _{1})\), then \(J_{\lambda}(c\lambda ^{-r}\phi )\leq 0\), where \(r=\frac{1}{q+1-p_{+}}>0\), \(c=((N+1)p_{-}^{-1}A_{1}^{-1}\|\phi \|_{q+1}^{-q-1})^{r}\) and \(A_{1}\) is given by (1.6).

Proof

Since

$$ \Vert \phi \Vert _{W^{1,\overrightarrow{p}}_{0}(\Omega )}=\sum_{i=1}^{N} \biggl( \int _{\Omega } \biggl\vert \frac{\partial \phi}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}}=1, $$

then \(\int _{\Omega } \vert \frac{\partial \phi}{\partial x_{i}} \vert ^{p_{i}}\,dx \leq 1\) for all \(i=1,\ldots ,N\). Also, \(p_{i}>1\), therefore

$$ \int _{\Omega } \biggl\vert \frac{\partial \phi}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \leq \biggl( \int _{\Omega } \biggl\vert \frac{\partial \phi}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}}, $$

hence,

$$ \sum_{i=1}^{N} \biggl( \int _{\Omega } \biggl\vert \frac{\partial \phi}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)\leq \sum_{i=1}^{N} \biggl( \int _{\Omega } \biggl\vert \frac{\partial \phi}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}}. $$

Let \(s=c\lambda ^{-r}\), then by (1.6), we have

$$ \begin{aligned} J_{\lambda}(s\phi )& = \sum _{i=1}^{N} \int _{\Omega } \frac{ \vert \frac{\partial (s\phi )}{\partial x_{i}} \vert ^{p_{i}}}{p_{i}}\,dx - \lambda \int _{\Omega }F(s\phi ) \,dx \\ & = \sum_{i=1}^{N}\frac{s^{p_{i}}}{p_{i}} \int _{\Omega } \biggl\vert \frac{\partial \phi}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx -\lambda \int _{\Omega }F(s \phi ) \,dx \\ & \leq \frac{\sum_{i=1}^{N}s^{p_{i}}}{p_{-}}-\lambda \int _{\Omega }F(s\phi ) \,dx \\ & \leq \frac{\sum_{i=1}^{N}s^{p_{i}}}{p_{-}}-\lambda A_{1} \int _{\Omega }\bigl(s^{q+1}\phi ^{q+1}-1 \bigr) \,dx \\ & \leq \frac{Ns^{p_{+}}}{p_{-}}-\lambda A_{1} \int _{\Omega }\bigl(s^{q+1}\phi ^{q+1}-1 \bigr) \,dx \\ & = \frac{Ns^{p_{+}}}{p_{-}}-A_{1}s^{q+1} \Vert \phi \Vert ^{q+1}_{q+1} \lambda +\lambda A_{1} \vert \Omega \vert \\ & = \biggl\{ \frac{Nc^{p_{+}}\lambda ^{-rp_{+}}}{p_{-}}-A_{1}c^{q+1} \lambda ^{-r(q+1)+1} \Vert \phi \Vert ^{q+1}_{q+1} \biggr\} +\lambda A_{1} \vert \Omega \vert \\ & \leq c^{p_{+}} \biggl\{ \frac{N\lambda ^{-rp_{+}}}{p_{-}}-A_{1}c^{q+1-p_{+}} \lambda ^{-r(q+1)+1} \Vert \phi \Vert ^{q+1}_{q+1} \biggr\} +\lambda A_{1} \vert \Omega \vert . \end{aligned} $$
(3.1)

Thus,

$$ \begin{aligned} J_{\lambda}(s\phi ) & \leq c^{p_{+}} \biggl\{ \frac{N\lambda ^{-rp_{+}}}{p_{-}}-\frac{N+1}{p_{-}}\lambda ^{-r(q+1)+1} \biggr\} +\lambda A_{1} \vert \Omega \vert \\ & = c^{p_{+}}\lambda ^{-rp_{+}} \biggl\{ \frac{N}{p_{-}}- \frac{N+1}{p_{-}}\lambda ^{-r(q+1)+1+rp_{+}} \biggr\} +\lambda A_{1} \vert \Omega \vert \\ & = -\frac{c^{p_{+}}\lambda ^{-rp_{+}}}{p_{-}}+\lambda A_{1} \vert \Omega \vert . \end{aligned} $$
(3.2)

Taking \(\lambda _{1}<\min \{1, (p_{-}A_{1}|\Omega |c^{-p_{+}})^{ \frac{-1}{(1+rp_{+})}}\}\), the lemma is proven. □

Lemma 3.2

Assume \(r=\frac{1}{q+1-p_{+}}>0\). There exists \(\tau >0\), \(c_{1}>0\) and \(\lambda _{2}\in (0,1)\) such that if \(\|u\|_{W_{0}^{1,p_{+}}(\Omega )}=\tau \lambda ^{-\tau}\), then \(J_{\lambda}(u)\geq c_{1}(\tau \lambda ^{-r})^{p_{+}}\) for all \(\lambda \in (0,\lambda _{2})\).

Proof

By the Sobolev embedding Theorem 2.1, there exists \(K_{1}>0\) such that if \(u\in W_{0}^{1,p_{+}}(\Omega )\), then \(\|u\|_{q+1}\leq K_{1}\|u\|_{W_{0}^{1,p_{+}}(\Omega )}\). Assume

$$ \tau =\min \bigl\{ \bigl(2p_{+}K_{1}^{q+1}B_{1} \bigr)^{-r}, c \Vert u \Vert _{W_{0}^{1,p_{+}}( \Omega )}\bigr\} . $$
(3.3)

If \(\|u\|_{W_{0}^{1,p_{+}}(\Omega )}=\tau \lambda ^{-r}\), then

$$ \begin{aligned} J_{\lambda}(u)& = \sum _{i=1}^{N} \frac{1}{p_{i}} \int _{\Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx -\lambda \int _{\Omega }F(u) \,dx \\ & \geq \frac{1}{p_{+}} \int _{ \Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{+}}\,dx - \lambda \int _{\Omega }F(u) \,dx \\ & = \frac{\tau \lambda ^{-r}}{p_{+}}-\lambda \int _{\Omega }F(u) \,dx \\ & \geq \frac{(\tau \lambda ^{-r})^{p_{+}}}{p_{+}}- \lambda \int _{\Omega }B_{1} \vert u \vert ^{q+1} \,dx - \lambda \vert \Omega \vert B_{1} \\ & \geq \frac{(\tau \lambda ^{-r})^{p_{+}}}{p_{+}}- \lambda B_{1}K_{1}^{q+1} \Vert u \Vert _{W_{0}^{1,p_{+}}(\Omega )}^{q+1} - \lambda \vert \Omega \vert B_{1} \\ & = \frac{(\tau \lambda ^{-r})^{p_{+}}}{p_{+}}-\lambda B_{1}K_{1}^{q+1}{ \tau ^{(q+1)} \lambda ^{-r(q+1)}} -\lambda \vert \Omega \vert B_{1} \\ & = \lambda ^{-rp_{+}} \biggl\{ \frac{\tau ^{p_{+}}}{2p_{+}}-\lambda ^{1+rp_{+}} \vert \Omega \vert B_{1} \biggr\} \\ & \geq \lambda ^{-rp_{+}}\frac{\tau ^{p_{+}}}{4p_{+}}, \end{aligned} $$
(3.4)

where we have used that \(\tau \leq (2p_{+}K_{1}^{q+1}B_{1})^{-r}\) (see (3.3)). Taking \(c_{1}=\frac{\tau ^{p_{+}}}{4p_{+}}\) and \(\lambda _{2}=\tau ^{\frac{p_{+}}{1+rp_{+}}}(4p_{+}B_{1}|\Omega |)^{- \frac{1}{1+rp_{+}}}\), the lemma is proven. □

Next, using the Mountain-Pass Theorem we prove that (1.2) has a solution \(u_{\lambda}\in W_{0}^{1,\overrightarrow{p}}(\Omega )\).

Lemma 3.3

Let \(\lambda _{3}= \min \{\lambda _{1}, \lambda _{2}\}\). There exists \(c_{2} > 0\) such that, for each \(\lambda \in (0,\lambda _{3})\), the functional \(J_{\lambda}\) has a critical point \(u_{\lambda}\) of mountain-pass type that satisfies \(J_{\lambda}(u_{\lambda})\leq c_{2}\lambda ^{-p_{+}r}\).

Proof

First, we show that \(J_{\lambda}\) satisfies the Palais–Smale condition.

Assume that \(\{u_{n}\}_{n}\) is a sequence in \(W_{0}^{1,\overrightarrow{p}} (\Omega )\) such that \(\{J_{\lambda}(u_{n})\}_{n}\) is bounded and \(J_{\lambda}^{\prime}(u_{n})\to 0\). Hence, there exists \(\nu >0\) such that

$$ \bigl\langle J^{\prime}_{\lambda}(u_{n}),u_{n} \bigr\rangle \leq \Vert u_{n} \Vert _{W_{0}^{1, \overrightarrow{p}} (\Omega )} $$

for \(n\geq \nu \). Thus,

$$ -\sum_{i=1}^{N} \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx -\sum_{i=1}^{N} \biggl( \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}} \biggr)^{ \frac{1}{p_{i}}}\,dx \leq -\lambda \int _{\Omega} f(u_{n})u_{n} \,dx \quad \text{for } n\geq \nu . $$

Let K be a constant such that \(|J_{\lambda}(u_{n})| \leq K\) for all \(n = 1, 2,\ldots \) . From (1.4), we obtain

$$ \begin{aligned} &\sum_{i=1}^{N} \frac{1}{p_{i}} \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx - \frac{\lambda}{\theta} \int _{\Omega} f(u_{n})u_{n} \,dx + \frac{\lambda}{\theta}M \vert \Omega \vert \\ &\quad \leq \sum_{i=1}^{N} \frac{1}{p_{i}} \int _{ \Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx - \lambda \int _{\Omega} F(u_{n}) \,dx \\ &\quad \leq K. \end{aligned} $$

From the last two inequalities we have

$$ \sum_{i=1}^{N}\biggl( \frac{1}{p_{i}}-\frac{1}{\theta}\biggr) \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx - \sum_{i=1}^{N} \frac{1}{\theta} \biggl( \int _{ \Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}} \biggr)^{\frac{1}{p_{i}}}\,dx \leq K-\frac{\lambda}{\theta}M \vert \Omega \vert . $$
(3.5)

Now, we consider two cases. Case (i): If \((\int _{\Omega} \vert \frac{\partial u_{n}}{\partial x_{i}} \vert ^{p_{i}} )^{ \frac{1}{p_{i}}}\leq 1\), for \(i=1,\ldots , N\), then \(\{u_{n}\}\) is a bounded sequence. Case (ii): If there exists \(1\leq j\leq N\) such that \((\int _{\Omega} \vert \frac{\partial u_{n}}{\partial x_{j}} \vert ^{p_{j}} )^{ \frac{1}{p_{j}}}> 1\), then

$$ \biggl( \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{j}} \biggr\vert ^{p_{j}}\,dx \biggr)^{ \frac{1}{p_{j}}} \leq \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{j}} \biggr\vert ^{p_{j}}\,dx . $$

This shows (3.5) can be written as

$$ \begin{aligned} \biggl(\frac{1}{p_{+}}-\frac{1}{\theta} \biggr) \biggl( \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{j}} \biggr\vert ^{p_{j}}\,dx \biggr)^{\frac{1}{p_{j}}}-\sum_{i=1}^{N} \frac{1}{\theta} \biggl( \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}}\leq K-\frac{\lambda}{\theta}M \vert \Omega \vert . \end{aligned} $$

This proves that \(\{u_{n}\}\) is a bounded sequence. Thus, without loss of generality, we may assume that \(\{u_{n}\}\) converges weakly. Let \(u\in W_{0}^{1,\overrightarrow{p}}(\Omega )\) be its weak limit. Since \(q< \frac{Np_{+}}{(N-p_{+})}\), by the Sobolev embedding theorem we may assume that \(\{u_{n}\}\) converges to u in \(L^{q}(\Omega )\). These assumptions and Hölder’s inequality imply

$$ \int _{\Omega}\lambda f(u_{n}) (u_{n}-u) \to 0. $$
(3.6)

From (3.6) and \(\lim_{n\to +\infty} J^{\prime}_{\lambda}(u_{n})=0\), we have

$$ \lim_{n\to +\infty}\sum _{i=1}^{N} \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}-2} \frac{\partial u_{n}}{\partial x_{i}}\biggl( \frac{\partial u_{n}}{\partial x_{i}}- \frac{\partial u}{\partial x_{i}}\biggr)\,dx =0. $$
(3.7)

Using again that u is the weak limit of \(\{u_{n}\}\) in \(W_{0}^{1,\overrightarrow{p}}(\Omega )\) we also have

$$ \lim_{n\to +\infty}\sum _{i=1}^{N} \int _{\Omega} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}-2} \frac{\partial u}{\partial x_{i}}\biggl( \frac{\partial u_{n}}{\partial x_{i}}- \frac{\partial u}{\partial x_{i}}\biggr)\,dx =0. $$
(3.8)

By Hölder’s inequality,

$$ \begin{aligned} &\sum_{i=1}^{N} \int _{\Omega} \biggl( \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}-2} \frac{\partial u_{n}}{\partial x_{i}}- \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}-2} \frac{\partial u}{\partial x_{i}} \biggr) \biggl( \frac{\partial u_{n}}{\partial x_{i}}- \frac{\partial u}{\partial x_{i}} \biggr)\,dx \\ &\quad \geq \sum_{i=1}^{N} \int _{\Omega} \biggl( \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}- \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}-1} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert - \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}-1} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert + \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}} \biggr)\,dx \\ &\quad = \sum_{i=1}^{N} \biggl( \int _{\Omega} \biggl( \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}+ \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}} \biggr)\,dx - \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}-1} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert \,dx \\ &\quad \quad {}- \int _{\Omega} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}-1} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert \,dx \biggr) \\ &\quad \geq \sum_{i=1}^{N} \biggl[ \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx - \biggl( \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{p_{i}-1}{p_{i}}} \biggl( \int _{\Omega} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}} \\ &\quad \quad - \biggl( \int _{\Omega} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{p_{i}-1}{p_{i}}} \biggl( \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}}+ \int _{\Omega} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr] \\ &\quad = \sum_{i=1}^{N} \biggl\{ \biggl[ \biggl( \int _{ \Omega} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{\frac{p_{i}-1}{p_{i}}}- \biggl( \int _{ \Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{\frac{p_{i}-1}{p_{i}}} \biggr] \\ &\quad \quad \times \biggl[ \biggl( \int _{\Omega} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{\frac{1}{p_{i}}}- \biggl( \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}} \biggr] \biggr\} \\ &\quad \geq 0. \end{aligned} $$
(3.9)

The relations (3.7)–(3.9) imply that

$$ \begin{aligned} &\lim_{n\to \infty}\sum _{i=1}^{N} \biggl\{ \biggl[ \biggl( \int _{\Omega} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{p_{i}-1}{p_{i}}}- \biggl( \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{p_{i}-1}{p_{i}}} \biggr] \\ &\quad \times \biggl[ \biggl( \int _{\Omega} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}}- \biggl( \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}} \biggr] \biggr\} =0. \end{aligned} $$

This shows that for each \(i=1,\ldots , N\)

$$ \lim_{n\to \infty} \biggl( \int _{\Omega} \biggl\vert \frac{\partial u_{n}}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}}= \biggl( \int _{\Omega} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}}, $$

which implies that \(\lim_{n\to \infty} \|u_{n}\|_{W_{0}^{1,\overrightarrow{p}}(\Omega )} = \|u\|_{W_{0}^{1,\overrightarrow{p}}(\Omega )}\). Since \(u_{n}\rightharpoonup u\), \(u_{n}\to u\) in \(W_{0}^{1,\overrightarrow{p}}(\Omega )\). This proves that \(J_{\lambda}\) satisfies the Palais–Smale condition.

From (3.1) we obtain

$$ \begin{aligned} \max \bigl\{ J_{\lambda}(s\phi ):s\geq 0\bigr\} & \leq \biggl( \frac{Np_{+}}{p_{-}}\biggr)^{r(q+1)} \frac{C^{1+p_{+}r}((q+1)^{r(q-p_{+})+r}-p_{+})}{D^{p_{+}r}p_{+}(q+1)^{r(q+1)}} \lambda ^{-p_{+}r} +\lambda A_{1} \vert \Omega \vert \\ &: = c^{\prime}_{2}\lambda ^{-p_{+}r}+\lambda A_{1} \vert \Omega \vert \\ & \leq c^{\prime}_{2}\lambda ^{-p_{+}r}+\lambda ^{-p_{+}r} A_{1} \vert \Omega \vert \\ &: = c_{2}\lambda ^{-p_{+}r}, \end{aligned} $$
(3.10)

where \(C =\max \{\int _{\Omega} \vert \frac{\partial{u}}{\partial{x_{i}}} \vert ^{p_{i}}\,dx : \text{for } 1 \leq i\leq N \}\) and \(D=A_{1}\|\phi \|_{q+1}^{q+1}\). With this estimate and Lemma 3.2, the existence of \(u_{\lambda}\in W^{1,\overrightarrow{p}}_{0} (\Omega )\) such that \(\nabla J_{\lambda}(u_{\lambda})=0\) and

$$ c_{1}\bigl(\tau \lambda ^{-r} \bigr)^{p_{+}}\leq J_{\lambda}(u_{\lambda})\leq c_{2} \lambda ^{-p_{+}r} $$
(3.11)

follows by the Mountain-Pass Theorem. □

Remark 3.4

The solution \(u_{\lambda}\in W_{0}^{1,\overrightarrow{p}}(\Omega )\) is indeed in \(L^{\infty}(\Omega )\) (see [12, Lemma 2.4]) and [3, Sect. 4]).

Lemma 3.5

Let \(u_{\lambda}\) be as in Lemma 3.3. Then, there is a positive constant \(M_{0}\) such that

$$ M_{0}\lambda ^{-r}\leq \Vert u_{\lambda} \Vert _{\infty}. $$
(3.12)

Proof

Note that there exists \(c_{1} > 0\) such that \(J(u_{\lambda}) \geq c_{1}\lambda ^{-rp_{+}}\). On the other hand, \(F(s)\geq \min F >-\infty \) and \(f(s)s\leq B_{1}(|s|^{q+1} + |s|)\) for all \(s\in \mathbb{R}\). Then, there is a constant \(C_{1}>0\) such that

$$ \begin{aligned} \lambda \int _{\Omega }f(u_{\lambda})u_{ \lambda }\,dx & = \sum _{i=1}^{N} \int _{\Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \\ & \geq p_{-}\sum_{i=1}^{N} \frac{1}{p_{i}} \int _{\Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \\ & \geq p_{-}J(u_{\lambda})+p_{-}\lambda \int _{\Omega }F(u_{ \lambda})\,dx \\ & \geq p_{-}C_{1}\lambda ^{-rp_{+}}+p_{-} \vert \Omega \vert \lambda \min F \\ & \geq c_{1}\lambda ^{-rp_{+}}. \end{aligned} $$

Thus, \(\lim_{\lambda \to 0}\|u_{\lambda}\|_{\infty}=+\infty \). On the other hand, by (1.5),

$$ \begin{aligned} \lambda \int _{\Omega }f(u_{\lambda})u_{ \lambda }\,dx & \leq B_{1}\lambda \int _{\Omega}\bigl( \vert u_{ \lambda} \vert ^{q+1}+ \vert u_{\lambda} \vert \bigr)\,dx \\ & \leq B_{1}\lambda \int _{\Omega}\bigl( \Vert u_{\lambda} \Vert _{ \infty}^{q+1}+ \Vert u_{\lambda} \Vert _{\infty}\bigr)\,dx \\ & \leq 2B_{1} \vert \Omega \vert \lambda \Vert u_{\lambda} \Vert _{\infty}^{q+1}, \end{aligned} $$

where we have used the fact that \(0 < \lambda < 1\). Finally, taking \(M_{0}= \frac{C_{1}}{2B_{1}|\Omega |}\), the lemma is proven. □

Lemma 3.6

Let \(u_{\lambda}\) be as in Lemma 3.3. Then, there exists \(c_{3}>0\) such that

$$ \sum_{i=1}^{N} \int _{\Omega} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}} \,dx \leq c_{3} \lambda ^{-rp_{+}} $$
(3.13)

for all \(\lambda \in (0,\lambda _{3})\).

Proof

By (1.4) and the definition of \(u_{\lambda}\),

$$ \begin{aligned} \lambda \int _{\Omega} \frac{\theta -p_{+}}{\theta}u_{\lambda }f(u_{\lambda})\,dx & \leq \lambda \int _{\Omega } \bigl(u_{\lambda }f(u_{\lambda})-p_{+}F(u_{ \lambda}) \bigr)\,dx -\frac{\lambda p_{+}M \vert \Omega \vert }{\theta} \\ & = \sum_{i=1}^{N} \int _{\Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx -p_{+} \int _{\Omega }F(u_{\lambda})\,dx - \frac{\lambda p_{+}M \vert \Omega \vert }{\theta} \\ & \leq p_{+} \Biggl( \sum_{i=1}^{N} \frac{1}{p_{i}} \int _{ \Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx - \int _{\Omega }F(u_{\lambda})\,dx \Biggr)- \frac{p_{+}\lambda M \vert \Omega \vert }{\theta} \\ & \leq c_{2}\lambda ^{-rp_{+}}+\frac{\lambda p_{+}M \vert \Omega \vert }{\theta} \\ & \leq 2 c_{2}\lambda ^{-rp_{+}}, \end{aligned} $$
(3.14)

where we have used \(0 < \lambda < 1\). Now, the result follows from (3.14) and the fact that \(u_{\lambda}\) is a weak solution of (1.2). □

4 Existence of a positive solution

Now, we can prove Theorem 1.2 as follows.

Proof

Suppose there exists a sequence \(\{\lambda _{j}\}_{j}, 1 >\lambda _{j} > 0\) for all j, converging to 0 such that the measure \(m(\{x\in \Omega ; u_{\lambda _{j}} (x)\leq 0\}) > 0\).

Letting \(w_{j}=\frac{u_{\lambda _{j}}}{\|u_{\lambda _{j}}\|_{\infty}}\), we see that

$$ -\sum_{i=1}^{N} \Vert u_{\lambda _{j}} \Vert _{\infty}^{p_{i}-1} \frac{\partial}{\partial x_{i}}\biggl( \biggl\vert \frac{\partial w_{j}}{\partial x_{i}} \biggr\vert ^{p_{i}-2} \frac{\partial w_{j}}{\partial x_{i}}\biggr)=\lambda _{j}f(u_{\lambda _{j}}). $$
(4.1)

From Lemmas 3.5 and 3.6 there is a constant \(C_{3}\) such that

$$ \begin{aligned} \sum_{i=1}^{N} \int _{\Omega } \biggl\vert \frac{\partial w_{j}}{\partial x_{i}} \biggr\vert ^{p_{i}} \,dx & = \sum_{i=1}^{N} \biggl(\frac{1}{ \Vert u_{\lambda _{j}} \Vert _{\infty}} \biggr)^{p_{i}} \int _{\Omega } \biggl\vert \frac{\partial u_{\lambda _{j}}}{\partial x_{i}} \biggr\vert ^{p_{i}} \,dx \\ & \leq \sum_{i=1}^{N} \frac{1}{(M_{0}\lambda ^{-r})^{p_{i}}} \int _{\Omega } \biggl\vert \frac{\partial u_{\lambda _{j}}}{\partial x_{i}} \biggr\vert ^{p_{i}} \,dx \\ & \leq M_{1}\frac{1}{\lambda ^{-rp_{+}}}\sum_{i=1}^{N} \int _{\Omega } \biggl\vert \frac{\partial u_{\lambda _{j}}}{\partial x_{i}} \biggr\vert ^{p_{i}} \,dx \\ & \leq C_{3}. \end{aligned} $$
(4.2)

This shows that for each \(i=1,\ldots ,N\)

$$ \begin{aligned} \int _{\Omega } \biggl\vert \frac{\partial w_{j}}{\partial x_{i}} \biggr\vert ^{p_{i}} \,dx \leq c_{3} \end{aligned} $$
(4.3)

and therefore

$$ \begin{aligned} \Vert w_{j} \Vert _{W_{0}^{1,\overrightarrow{p}}(\Omega )}=\sum_{i=1}^{N} \biggl( \int _{\Omega } \biggl\vert \frac{\partial w_{j}}{\partial x_{i}} \biggr\vert ^{p_{i}} \,dx \biggr)^{ \frac{1}{p_{i}}}\leq D_{3}. \end{aligned} $$
(4.4)

By [3, Proposition 4.1] (or [13, Theorem 2]) the sequence \(w_{j}\) is uniformly bounded in \(L^{\infty}(\Omega )\). Therefore, one may denote its limit by ω.

Next, using comparison principles [12, Lemma 2.5], we prove that \(w(x)\geq 0\).

Let \(v_{0}\in W_{0}^{1, p_{+}}(\Omega )\) be the solution of

$$ \textstyle\begin{cases} -\Delta _{p_{+}}v_{0}=1&\text{in } \Omega , \\ v_{0}=0,&\text{on } \partial \Omega . \end{cases} $$
(4.5)

Let \(K_{j}:=\lambda _{j}\min \{f(t); t\in \mathbb{R}\}\|u_{\lambda _{j}} \|_{\infty}^{1-p_{+}}\). The solution \(v_{j}\) of the equation

$$ \textstyle\begin{cases} -\Delta _{p_{+}}v_{j}=K_{j}&\text{in } \Omega , \\ v_{0}=0,&\text{on } \partial \Omega , \end{cases} $$
(4.6)

is given by \(v_{j}= (-K_{j} )^{\frac{1}{p_{+}-1}}v_{0}\).

Since \(\lambda _{j}f(u_{\lambda _{j}})\|u_{\lambda _{j}}\|_{\infty}^{1-p_{+}} \geq K_{j}\), it follows by the comparison principle in [12, Lemma 2.5] that \(w_{j}\geq v_{j}\). Then, the fact that \(v_{j}(x)\to 0\) as \(j\to 0\) implies that \(w(x)\geq 0\) for all \(x\in \Omega \).

Since, by hypothesis, \(q > p_{+}-1\), we have \(s = \frac{Np_{+}r}{(N -p_{+})} > 1\). This result, together with the Sobolev embedding Theorem, (1.3) and Lemma 3.6, gives

$$ \begin{aligned} \int _{\Omega } \bigl\vert f(u_{\lambda _{j}}) \bigr\vert ^{s} \Vert u_{\lambda _{j}} \Vert _{\infty}^{s(1-p_{+})}\,dx & \leq B^{s}2^{s-1} \int _{\Omega}\bigl( \vert u_{\lambda _{j}} \vert ^{(q+1-p_{+})s}+1\bigr)\,dx \\ & \leq C \bigl( \Vert u_{\lambda _{j}} \Vert _{W_{0}^{1,p_{+}}(\Omega )}^{ \frac{Np_{+}}{N-p_{+}}}+1 \bigr) \\ & \leq C \bigl(c_{3}\lambda _{j}^{-r\frac{Np_{+}}{N-p_{+}}}+1 \bigr), \end{aligned} $$
(4.7)

where \(C > 0\) is a constant independent of j and, without loss of generality, we have assumed \(\|u_{\lambda _{j}}\|_{\infty}\geq 1\). From (4.7) and the fact that \(\frac{rNp_{+}}{(sN-sp_{+})} = 1\) we see that \(\{\lambda _{j}f(u_{\lambda _{j}}) \|u_{\lambda _{j}}\|_{\infty}^{(1-p_{+})} \}\) is bounded in \(L^{s}(\Omega )\), so we may assume that it converges weakly. Let \(z\in L^{s}(\Omega )\) be the weak limit of such a sequence. Since \(\lambda _{j} \|u_{\lambda _{j}}\|_{\infty}^{(1-p_{+})}\to 0\) as \(j\to +\infty \) and f is bounded from below, \(z\geq 0\). Now, if \(\phi \in C_{0}^{\infty}(\Omega )\), then

$$ \begin{aligned} \sum_{i=1}^{N} \int _{\Omega } \biggl\vert \frac{\partial w}{\partial x_{i}} \biggr\vert ^{p_{i}-2}\biggl\langle \frac{\partial w}{\partial x_{i}}, \frac{\partial \phi}{\partial x_{i}}\biggr\rangle \,dx & = \lim_{j\to \infty} \sum_{i=1}^{N} \int _{\Omega } \biggl\vert \frac{\partial w_{j}}{\partial x_{i}} \biggr\vert ^{p_{i}-2}\biggl\langle \frac{\partial w_{j}}{\partial x_{i}}, \frac{\partial \phi}{\partial x_{i}}\biggr\rangle \,dx \\ & = \lim_{j\to \infty} \sum_{i=1}^{N} \int _{\Omega } \Vert u_{ \lambda _{j}} \Vert _{\infty}^{1-p_{i}} \biggl\vert \frac{\partial u_{\lambda _{j}}}{\partial x_{i}} \biggr\vert ^{p_{i}-2} \biggl\langle \frac{\partial u_{\lambda _{j}}}{\partial x_{i}}, \frac{\partial \phi}{\partial x_{i}}\biggr\rangle \,dx \\ & \geq \lim_{j\to \infty} \Vert u_{\lambda _{j}} \Vert _{\infty}^{1-p_{+}} \sum_{i=1}^{N} \int _{\Omega } \biggl\vert \frac{\partial u_{\lambda _{j}}}{\partial x_{i}} \biggr\vert ^{p_{i}-2} \biggl\langle \frac{\partial u_{\lambda _{j}}}{\partial x_{i}}, \frac{\partial \phi}{\partial x_{i}} \biggr\rangle \,dx \\ & = \lim_{j\to \infty} \int _{\Omega } \Vert u_{\lambda _{j}} \Vert _{\infty}^{1-p_{+}}\lambda _{j}f(u_{\lambda _{j}}) \phi \,dx \\ & = \int _{\Omega }z\phi \,dx . \end{aligned} $$
(4.8)

Therefore, \(-\Delta _{\overrightarrow{p}}w\geq z\). Since \(\|w_{j}\|_{\infty}= 1\), \(w\neq 0\). By [12, Lemma 2.5], \(w>0\) in Ω.

Therefore, since \(\{w_{j}\}_{j}\) converges w in \(L^{\infty}(\Omega )\), for sufficiently large \(j, w_{j}(x) > 0\) for all \(x\in \Omega \). Hence, \(u_{\lambda _{j}} (x) > 0\) for all \(x\in \Omega \), which contradicts the assumption that

$$ m\bigl(\bigl\{ x; u_{\lambda _{j}} (x) < 0\bigr\} \bigr) > 0. $$

This contradiction proves Theorem 1.2. □

Data availability

Not applicable.

References

  1. Alves, C.O., de Holanda, A.R.F., dos Santos, J.A.: Existence of positive solutions for a class of semipositone quasilinear problems through Orlicz-Sobolev space. Proc. Am. Math. Soc. 147, 285–299 (2019)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.O., de Holanda, A.R.F., dos Santos, J.A.: Existence of positive solutions for a class of semipositone problem in whole \(\mathbb{R}^{N}\). Proc. R. Soc. Edinb., Sect. A 150(5), 2349–2367 (2020). https://doi.org/10.1017/prm.2019.20

    Article  Google Scholar 

  3. Alves, C.O., El Hamidi, A.: Existence of solution for a anisotropic equation with critical exponent. Differ. Integral Equ. 21, 25–40 (2008)

    MathSciNet  Google Scholar 

  4. Ambrosetti, A., Arcoya, D., Buffoni, B.: Positive solutions for some semi-positone problems via bifurcation theory. Differ. Integral Equ. 7(3–4), 655–663 (1994)

    MathSciNet  Google Scholar 

  5. Caldwell, S., Castro, A., Shivaji, R., Unsurangsie, S.: Positive solutions for classes of multiparameter elliptic semipositone problems. Electron. J. Differ. Equ. 2007, paper 96 (2007)

    MathSciNet  Google Scholar 

  6. Castro, A., de Figueredo, D.G., Lopera, E.: Existence of positive solutions for a semipositone p-Laplacian problem. Proc. R. Soc. Edinb., Sect. A 146(3), 475–482 (2016). https://doi.org/10.1017/S0308210515000657

    Article  MathSciNet  Google Scholar 

  7. Castro, A., Shivaji, R.: Nonnegative solutions for a class of nonpositone problems. Proc. R. Soc. Edinb., Sect. A 108(3–4), 291–302 (1988)

    Article  MathSciNet  Google Scholar 

  8. Castro, A., Shivaji, R.: Semipositone problems. In: Goldstein, G.R., Goldstein, J.A. (eds.) Semigroups of Linear and Nonlinear Operations and Applications. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1888-0_4

    Chapter  Google Scholar 

  9. Chhetri, M., Drábek, P., Shivaji, R.: Existence of positive solutions for a class of p-Laplacian superlinear semipositone problems. Proc. R. Soc. Edinb., Sect. A 145(5), 925–936 (2015)

    Article  MathSciNet  Google Scholar 

  10. Costa, D.G., Quoirin, H.R., Tehrani, H.: A variational approach to superlinear semipositone elliptic problems. Proc. Am. Math. Soc. 145, 2662–2675 (2017)

    MathSciNet  Google Scholar 

  11. Costa, D.G., Tehrani, H., Yang, J.: On a variational approach to existence and multiplicity results for semipositone problems. Electron. J. Differ. Equ. 2006, 11 (2006)

    MathSciNet  Google Scholar 

  12. dos Santos, G.C.G., Figueiredo, G.M., Tavares, L.S.: Existence results for some anisotropic singular problems via sub-supersolutions. Milan J. Math. 87, 249–272 (2019). https://doi.org/10.1007/s00032-019-00300-8

    Article  MathSciNet  Google Scholar 

  13. Fragalà, I., Gazzola, F., Kawohl, B.: Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21, 715–734 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Fu, S., Perera, K.: On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete Contin. Dyn. Syst., Ser. S 14(5), 1747–1756 (2021). https://doi.org/10.3934/dcdss.2020452

    Article  MathSciNet  Google Scholar 

  15. Lions, P.L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24, 441–467 (1982)

    Article  MathSciNet  Google Scholar 

  16. Perera, K., Shivaji, R., Sim, I.: A class of semipositone p-Laplacian problems with a critical growth reaction term. Adv. Nonlinear Anal. 9, 516–525 (2020)

    Article  MathSciNet  Google Scholar 

  17. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Regional Conference Series in Mathematics, vol. 65. Am. Math. Soc., Providence (1986)

    Google Scholar 

  18. Razani, A., Figueiredo, G.M.: A positive solution for an anisotropic \(p\&q\)-Laplacian. Discrete Contin. Dyn. Syst., Ser. S (2022). https://doi.org/10.3934/dcdss.2022147

    Article  Google Scholar 

  19. Razani, A., Figueiredo, G.M.: Existence of infinitely many solutions for an anisotropic equation using genus theory. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8264

    Article  MathSciNet  Google Scholar 

  20. Razani, A., Figueiredo, G.M.: Degenerated and competing anisotropic \((p,q)\)-Laplacians with weights. Appl. Anal. (2022). https://doi.org/10.1080/00036811.2022.2119137

    Article  Google Scholar 

  21. Santos, J.A., Alves, C.O., Massa, E.: A nonsmooth variational approach to semipositone quasilinear problems in \(\mathbb{R}^{N}\). J. Math. Anal. Appl. 527(1), 127432 (2023). https://doi.org/10.1016/j.jmaa.2023.127432

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to A. Razani.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razani, A., Figueiredo, G.M. Positive solutions for a semipositone anisotropic p-Laplacian problem. Bound Value Probl 2024, 34 (2024). https://doi.org/10.1186/s13661-024-01841-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01841-7

Mathematics Subject Classification

Keywords