Skip to main content

Fractional double-phase nonlocal equation in Musielak-Orlicz Sobolev space

Abstract

In this paper, we analyze the existence of solutions to a double-phase fractional equation of the Kirchhoff type in Musielak-Orlicz Sobolev space with variable exponents. Our approach is mainly based on the sub-supersolution method and the mountain pass theorem.

1 Introduction and background

In recent years, partial differential equations and variational problems using a double-phase operator have the attracted attention of many researchers; see, for example [14–16] and the references therein. It sheds light on various fields of applications, including but not limited to anisotropic materials, Lavrentiev’s phenomenon, and elasticity theory. The study of mathematical problems involving variable exponents lies in the modeling of many physical applications, for example, image processing [1, 7, 9, 17, 21, 24, 35], space technology, the field of robotics, and electrorheological fluids. Winslow [32] studied the electrofluids, which were noted at the beginning of the last century, and they possess a very important property, namely, the electric field affects the viscosity of theses liquids. Furthermore, it was discovered that viscosity is inversely proportional to the strength of the fluid when the electric field occurs. In this case, it is called the Winslow effect, for more benefit, see Halsey [8]. Radulescu’s [21] work on electrorheological fluids and image restoration via Gaussian smoothing can also be found in the work by Chen et al. [4].

This paper deals with the \(p ( \xi ) \)-Laplacian fractional Kirchhoff double-phase equation

$$ \textstyle\begin{cases} \mathcal{K} ( J ( \xi ) ) \mathcal{R}_{p ( . ) ,q ( . ) }^{\kappa ( . ) }= \sigma (x)\xi ^{\lambda (x)-1}+g(x, \xi ) ,&\text{in }\Lambda \\ \xi >0,& \text{in }\Lambda \\ \xi =0,& \text{on }\partial \Lambda \end{cases} $$
(1.1)

with \(\Lambda = [ 0,T ] \times [ 0,T ] \subset \mathbb{R} ^{2}\), \(0<\sigma \in L^{\infty } ( \Lambda ) \), \(\lambda \in C ( \overline{\Lambda } ) \) with \(\lambda >1\); and \(\mathcal{R}_{p ( . ) ,q ( . ) }^{\kappa ( . ) }\) denotes the double-phase operator given by

$$ \mathcal{R}_{p ( x ) ,q ( x ) }^{\kappa ( x ) }\xi :={}^{\mathbb{H}} \mathbb{D}_{T}^{\gamma ,\delta ; \psi } \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi }\xi \big\vert ^{p ( x ) -2}.^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi +\kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi \big\vert ^{q ( x ) -2}. {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi \bigr) , $$

where \({}^{\mathbb{H}}\mathbb{D}_{T}^{\gamma ,\delta ;\psi } ( . ) \) and \({}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } ( . ) \) are the ψ-Hilfer fractional operator of order \(\frac{1}{p ( x ) }<\gamma ( x ) <1\) and type δ (\(0\leq \delta \leq 1 \)), and

$$ J ( \xi ) = \int _{\Lambda } \biggl( \frac{1}{p(x)} \big\vert ^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi }\xi \big\vert ^{p ( x ) }\,dx+ \frac{\kappa ( x ) }{q ( x ) } \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \xi \big\vert ^{q ( x ) }\,dx \biggr) $$
(1.2)

In addition, we assume the following:

(a) The functions \(p ( . ) ,q ( . ) \in C ( \overline{\Lambda } ) \) verify the following assumptions:

$$ p ( x ) < 2,\qquad 1< p ( x ) \leq q ( x ) < p^{ \star }=\frac{2p ( x ) }{2-p ( x ) }, \qquad \frac{q ( x ) }{p ( x ) }< \frac{3}{2},\quad \text{for any }x\in \overline{\Lambda }. $$

Equation (1.1) is a generalization of the nonlocal problem

$$ \rho \frac{\partial ^{2}\xi }{\partial t^{2}}- \biggl( \frac{\rho _{0}}{h}+\frac{E}{2L} \int _{0}^{L} \biggl\vert \frac{\partial \xi }{\partial x} \biggr\vert ^{2}\,dx \biggr) \frac{\partial ^{2}\xi }{\partial x^{2}}=0, $$

which represents a general case of D’Alembert’s vibration equation Provided by Kirchhoff [12]. Additionally, in [33], a time-related equation was given in the following form:

$$ \xi _{tt}+\Delta ^{2}\xi -\mathcal{K} \bigl( \Vert \nabla \xi \Vert _{2}^{2} \bigr)\Delta \xi =f(x, \xi ). $$
(1.3)

Many authors have worked on problems related to double-phase operators and have obtained several results, including the following:

In [15], Liu and Dai proved the existence and multiplicity of solutions to the double-phase problem of the form

$$ \textstyle\begin{cases} -\operatorname{div} ( \vert \nabla u \vert ^{p-2} \nabla u+a ( x ) \vert \nabla u \vert ^{q-2} \nabla u ) =f ( x,u ) ,\quad \text{in }\Delta , \\ u=0,\quad \text{on }\partial \Delta ,\end{cases} $$

where Δ is a bounded domain with smooth boundary, \(N\geq 2\), \(1< p< q\), \(\frac{q}{p}<1+\frac{1}{N}\), \(a.:\overline{\Delta }\rightarrow [ 0;+\infty ) \) is Lipschitz continuous, and f fulfills certain conditions. For more information, one can also see the works by Ragusa and Tachikawa [22] and Wulong et al. [34].

In [19], the existence of positive solutions to a class of double-phase Dirichlet equations that have combined effects of the singular term and the parametric linear term is studied. The reader can be referred to many other papers that discuss double-phase problems, including but not limited to [2, 5] and the references therein.

It is worth noting that fractional differential equations have led to the modeling of many phenomena in many fields of science [11, 26], and applications of the latter have appeared in engineering, medicine, and mechanics, which increased the researchers’ interest in these equations, especially in mathematical aspect; see, for example, [15, 36]. In [26], the authors were able to construct the ψ-Hilfer fractional operator with several examples. See also [30], where the space \(\mathbb{H}_{p}^{\alpha ,\beta ,\psi } ( [ 0,T ] ,\mathbb{R} ) \) is created, allowing the study of many of these equations involving the ψ-Hilfer fractional in the appropriate spaces.

In [31], using the Nehari manifolds technique and combining it with fiber maps, the authors presented an analysis of weak solutions by studying a fractional problem of the following form:

$$ \textstyle\begin{cases} ^{\mathbb{H}}\mathbb{D}_{T}^{\alpha ,\beta ,\psi } ( \vert \mathbb{D}_{0^{+}}^{\alpha ,\beta ,\psi }\xi ( t ) \vert ^{p-2}\mathbb{D}_{0^{+}}^{\alpha ,\beta ,\psi }\xi ( t ) ) =\lambda \vert \xi ( t ) \vert ^{p-2} \xi ( t ) +b ( x ) \vert \xi ( t ) \vert ^{q-2}\xi ( t ) , \\ I_{0^{+}}^{\beta ( \beta -1 ) ,\psi }\xi ( 0 ) =I_{T}^{\beta ( \beta -1 ) ,\psi }\xi ( T )\end{cases} $$
(1.4)

where \(\frac{1}{p}<\alpha <1\), \(0\leq \beta \leq 1\), \(1< q< p-1<\infty \), \(b\in L^{\infty } ( [ 0,T ] ) \), and \(\lambda >0\). In [31], the result of bifurcation from infinity to equation (1.4) is also given.

In [23], the authors present the existence and multiplicity of solutions of the Kirchhoff ψ-Hilfer fractional p-Laplacian equation using critical point theory.

Researchers worked on many models of fractional differential equations using variational problems that include fractional operators, for example, Nyamoradi and Tayyebi [18], Ghanmi and Zhang [6], Kamache et al. [10], Sousa et al. [27, 30]. For example, in [10], Kamache et al. discussed a class of perturbed nonlinear fractional p-Laplacian differential systems and proved the existence of three weak solutions using the variational method and Ricceri’s critical points theorems. On the other hand, in [29], the existence and multiplicity of solutions of the following \(\kappa ( \xi ) \)-Kirchhoff equation are proven using the variational method

$$ \textstyle\begin{cases} \mathfrak{R} ( \int _{\Lambda } \frac{1}{\kappa ( \xi ) } \vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\mu ,\upsilon ;\psi } \phi \vert ^{\kappa ( \xi ) }\,d\xi ) \boldsymbol{L}_{\kappa ( \xi ) }^{\mu ,\upsilon ,\psi } \phi =g ( x,\xi ) , \quad \text{in }\Lambda = [ 0,T ] \times [ 0,T ] , \\ \phi =0,\quad \text{on }\partial \Lambda ,\end{cases} $$
(1.5)

where

$$ \boldsymbol{L}_{\kappa ( x ) }^{\mu ,\upsilon ,\psi } \phi :=\mathcal{R}_{p ( . ) ,q ( . ) }^{\kappa ( . ) }v, $$

\(g ( x,\xi ) :\Lambda \times \mathbb{R} \rightarrow \mathbb{R} \) is the Caratheodory function, satisfying some conditions, and \(\mathfrak{R} ( t ) \) is a continuous function.

In [28], the author discusses the multiplicity nontrivial solution for a new class of fractional differential equations of the Kirchhoff type in the ψ-fractional space \(\mathtt{S}_{\mathcal{H},0}^{\alpha ,\beta ,\psi }\) via critical point result and variational methods.

In [3], Tahar et al. studied the existence and multiplicity of solutions for problem (1.1) with \(\kappa ( x ) =0\),and \(\lambda ( x ) =q ( x ) \) proving their results using the mountain pass theorem combined with the sub-supersolution method.

Motivated by these works, we study the existence and multiplicity of solutions for class of fractional fractional Kirchhoff double-phase problem involving a ψ-Hilfer fractional operator with variable exponent using the sub-supersolution method and mountain pass theorem.

Here, we take the Kirchhoff function \(\mathcal{K}\) and the source term g with the following conditions:

\((K_{0})\) Let \(\mathcal{K}:[0, +\infty )\rightarrow {}[ k_{0}, +\infty )\) be a continuous function, \(k_{0}>0\), and nondecreasing;

\((K_{1})\) Let \(\theta \in ( 0,1 ) \) such that

$$ \widehat{\mathcal{K}}(t):= \int _{0}^{t}\mathcal{K}(\tau )\,d\tau \geq (1- \theta )\mathcal{K}(t)t\quad \text{for all }t\geq 0; $$

\((g_{1})\) \(g\in C(\Lambda \times {}[ 0, +\infty ),\mathbb{R})\) and \(\exists l>0\) such that

$$ g(x, t)\geq \sigma (x) \bigl(1-t^{\lambda (x)-1} \bigr)\quad \text{for all }(x, t) \in \Lambda \times {}[ 0, l]; $$

\((g_{2})\) There is a function \(\gamma :\overline{\Lambda }\rightarrow (1, +\infty )\), which fulfills

$$ \bigl\vert g(x, t) \bigr\vert \leq \sigma (x) \bigl(1+t^{\gamma (x)-1} \bigr) \quad \text{for all }(x, t) \in \Lambda \times {}[ 0, +\infty ); $$

\((g_{3})\) There is \(\mu >\frac{q^{+}}{1-\theta }\) such that

$$ 0< \mu G(x, t):=\mu \int _{0}^{t}g(x,\tau )\,d\tau \leq g(x, t)t\quad \text{a.e. }x\in \Lambda \text{ and for all }0< T< t. $$

We now give our results as follows:

Theorem 1.1

Let us consider that \((K_{0})\) and \((g_{1})\)–\((g_{2})\) are satisfied. Then, for some \(\alpha _{\star }>0\), the problem (1.1) has at least one solution with condition \(\|\sigma \|_{\infty }<\alpha _{\star }\).

Theorem 1.2

Let us consider that \((K_{0})\)–\((K_{1})\) and \((g_{1})\)–\((g_{3})\) are satisfied. If \(\lambda ^{+}< p^{-}<(p^{\star })\) or (\(\lambda ^{-}>\frac{q^{+}}{1-\theta }\) or ), then for some \(\alpha ^{\star }>0\), the problem (1.1) accepts two solutions under the condition \(\|\sigma \|_{\infty }<\alpha ^{\star }\).

We arrange our paper in the following manner: In Sect. 2, we give some definitions and lemmas for the Lebesgue and Musielak-Orlicz Sobolev spaces. In Sect. 3, we present some results that will be needed in our study of the problem (1.1). Sections 4 and 5 deal with the main proofs of the Theorems 1.1 and 1.2, respectively.

2 Preliminaries

In this section, the basic concepts and ideas on Lebesgue and Musielak-Orlicz Sobolev spaces that we will need in arriving at the results will be presented (see [25]).

Let \(\nu \in C(\overline{\Lambda })\), with \(\nu >1\), and denote

$$ \nu ^{+}:=\max_{\overline{\Lambda }}\nu (x)\quad \text{and}\quad \nu ^{-}:= \min_{\overline{\Lambda }}\nu (x). $$

The variable exponent Lebesgue space

$$ L^{\nu (x)}(\Lambda )= \biggl\{ u:\Lambda \rightarrow \mathbb{R} \text{ measurable}: \int _{\Lambda } \vert u \vert ^{\nu (x)}\,dx< \infty \biggr\} , $$

with the norm

$$ \Vert u \Vert _{\nu (x)}=\inf \biggl\{ \tau >0 : \int _{\Delta } \biggl\vert \frac{u}{\tau } \biggr\vert ^{\nu (x)}\,dx\leq 1 \biggr\} , $$

is a reflexive and separable Banach space, whose conjugate space is \(L^{\nu ^{\prime }(x)}(\Lambda )\), where \(\nu ^{\prime }(x)= \frac{\nu ( x ) }{\nu ( x ) -1}\).

Lemma 2.1

([28])

Let \(( u,v ) \in L^{\nu (x)}(\Lambda )\times L^{\nu ^{\prime }(x)}(\Lambda )\), then

$$ \int _{\Lambda } \vert uv \vert \,dz\leq 2 \Vert u \Vert _{\nu (x)} \Vert v \Vert _{\nu ^{\prime }(x)}\quad \textit{(Holder-type inequality)}. $$

Lemma 2.2

([28])

For \(u\in L^{\nu (x)}\), then

$$ \min \bigl( \Vert u \Vert _{\nu (x)}^{\nu ^{-}}, \Vert u \Vert _{\nu ^{\prime }(x)}^{ \nu ^{+}} \bigr) \leq \int _{\Lambda } \vert u \vert ^{\nu (x)}\,dx\leq \max \bigl( \Vert u \Vert _{\nu (x)}^{\nu ^{-}}, \Vert u \Vert _{\nu ^{\prime }(x)}^{\nu ^{+}} \bigr) . $$

Assume that (a) is achieved, and let \(\mathcal{A}:\Lambda \times {}[ 0, +\infty )\rightarrow {}[ 0, +\infty )\) defined by

$$ \mathcal{A} ( x,t ) =t^{p ( x ) }+\kappa ( x ) t^{q ( x ) }, $$

the modular associated with \(\mathcal{A}\) is given by

$$ \rho _{\mathcal{A}} ( u ) = \int _{\Lambda }\mathcal{A} \bigl( x, \vert u \vert \bigr)\,dx= \int _{\Lambda } \bigl( u^{p ( x ) }+\kappa ( x ) u^{q ( x ) } \bigr)\,dx,\quad \text{for all }u\in \Theta ( \Lambda ) , $$

where \(\Theta ( \Lambda ) \) is a measurable functions space. Let \(L^{\mathcal{A}}\) be the Musielak-Orlicz space defined by

$$ L^{\mathcal{A}}= \bigl\{ u\in \Theta ( \Lambda ) :\rho _{\mathcal{A}} ( u ) < \infty \bigr\} , $$

endowed with the norm

$$ \Vert u \Vert _{\mathcal{A}}=\inf \biggl\{ \tau >0:\rho _{ \mathcal{A}} \biggl( \frac{u}{\tau } \biggr) \leq 1 \biggr\} . $$

Lemma 2.3

([28])

Assuming that (a) is achieved, we confirm that the following is true:

(1) If \(\Vert u \Vert _{\mathcal{A}}\leq 1\), then \(\Vert u \Vert _{\mathcal{A}}^{q^{+}}\leq \rho _{q ( \xi ) }\leq \Vert u \Vert _{\mathcal{A}}^{p^{-}}\);

(2) If \(\Vert u \Vert _{\mathcal{A}}>1\), then \(\Vert u \Vert _{\mathcal{A}}^{p^{-}}\leq \rho _{q ( \xi ) }\leq \Vert u \Vert _{\mathcal{A}}^{q^{+}}\).

Define the Musielak-Orlicz Sobolev space \(\mathcal{H}^{1,\mathcal{A}} ( \Lambda ) \) as follows:

$$ \mathcal{H}^{1,\mathcal{A}} ( \Lambda ) = \bigl\{ u\in L^{ \mathcal{A}}(\Lambda ): \bigl\vert \mathbb{D}_{0^{+}}^{\alpha ,\beta ,\psi }u \bigr\vert \in L^{\mathcal{A}}(\Lambda ) \bigr\} $$

equipped by

$$ \Vert u \Vert _{1,\mathcal{A}}= \Vert u \Vert _{ \mathcal{A}}+ \bigl\Vert \mathbb{D}_{0^{+}}^{\alpha ,\beta ,\psi }u \bigr\Vert _{\mathcal{A}}, $$

where \(\Vert \mathbb{D}_{0^{+}}^{\alpha ,\beta ,\psi }u \Vert _{\mathcal{A}}= \Vert \vert \mathbb{D}_{0^{+}}^{\alpha , \beta ,\psi }u \vert \Vert \).

Let us denote \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \) the closure of \(C_{0}^{\infty } ( \Lambda ) \) in \(\mathcal{H}^{1,\mathcal{A}} ( \Lambda ) \). From [28], \(L^{\mathcal{A}} ( \Lambda ) \), \(\mathcal{H}^{1,\mathcal{A}} ( \Lambda ) \) and \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \) are reflexive Banach spaces.

Lemma 2.4

([28])

Let (a) be verified and \(\nu \in ( \overline{\Lambda }\times (1,+\infty ) )\). Then,

\(( j ) \) \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \hookrightarrow L^{\nu (x)}(\Lambda )\) is continuous when \(\nu ( x ) \leq p^{\star } ( x ) \) for any \(x\in \Lambda \);

\(( jj ) \) \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \hookrightarrow L^{\nu (x)}(\Lambda )\) is compact when \(\nu ( x ) < p^{\star } ( x ) \) for any \(x\in \Lambda \);

\(( jjj ) \) There is \(c>0\) fulfilling \(\Vert u \Vert _{\mathcal{A}}\leq c \Vert \mathbb{D}_{0^{+}}^{\alpha ,\beta , \psi }u \Vert _{\mathcal{A}}\) for all \(u\in \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \) (Poincaré-type inequality).

3 Auxiliary results

We present some important definitions and concepts to create appropriate sub-supersolutions to our problem.

Definition 3.1

Let \(\omega _{1},\omega _{2}\in \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \). We say that

$$ \mathcal{K} \bigl( J ( \omega _{1} ) \bigr) \mathcal{R}_{p ( x ) ,q ( x ) }^{\kappa ( x ) } \omega _{1}\leq \mathcal{K} \bigl( J ( \omega _{2} ) \bigr) \mathcal{R}_{p ( x ) ,q ( x ) }^{ \kappa ( x ) }\omega _{2} $$

if for all nonnegative function \(\varphi \in \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \),

$$\begin{aligned}& \mathcal{K} \bigl( J ( \omega _{1} ) \bigr) \int _{ \Lambda } \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi } \omega _{1} \big\vert ^{p ( x ) -2} {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \\& \qquad {}+\kappa ( x ) \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{q ( x ) -2}{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr) .^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\alpha ,\beta ;\psi }\varphi \,dx \\& \quad \leq \mathcal{K} \bigl( J ( \omega _{2} ) \bigr) \int _{ \Lambda } \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi } \omega _{2} \big\vert ^{p ( x ) -2} {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \\& \qquad {}+\kappa ( x ) \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \big\vert ^{q ( x ) -2}{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr) .^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\alpha ,\beta ;\psi }\varphi \,dx. \end{aligned}$$

Lemma 3.2

Let \((K_{0})\) be satisfied. Then, φ: \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \rightarrow ( \mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ) ) ^{\ast }\) of the form

$$ \begin{aligned} \bigl\langle \varphi ( \xi ) ,\chi \bigr\rangle ={}&\mathcal{K} \bigl( J ( \xi ) \bigr) \int _{\Lambda } \bigl( \big\vert ^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \xi \big\vert ^{p ( x ) -2} {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \xi + \kappa ( x ) \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \xi \big\vert ^{q ( x ) -2} {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \xi \bigr) \\ &{}\times {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\chi \,dx,\quad \xi ,\chi \in \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \end{aligned} $$
(3.1)

is strictly monotone and continuous.

Proof

φ is clearly continuous. We are concerned here with monotonicity completely. Let \(\omega _{1}\neq \omega _{2}\in \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \), and let us suppose that \(J ( \omega _{1} ) \geq J ( \omega _{2} ) \), and \(\mathcal{K}\) is nondecreasing, implying that

$$ \mathcal{K} \bigl( J ( \omega _{1} ) \bigr) )\geq \mathcal{K} \bigl( J ( \omega _{2} ) \bigr) ). $$
(3.2)

Further, we have

$$ ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1}.{}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2}\leq \frac{1}{2} \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ; \psi }\omega _{1} \big\vert ^{2}+ \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr) . $$
(3.3)

Thus,

$$\begin{aligned}& \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{p ( x ) }- \bigl\vert ^{ \mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr\vert ^{p(x)-2 }{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1}.^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \\& \quad \geq \frac{1}{2} \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{1} \big\vert ^{p(x)-2} \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{2}- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr) \end{aligned}$$
(3.4)

and

$$\begin{aligned}& \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2}\big\vert ^{p ( x ) }- \bigl\vert ^{ \mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{p(x)-2 }{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2}.^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \\& \quad \geq \frac{1}{2} \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{2} \big\vert ^{p(x)-2} \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \big\vert ^{2}- \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \bigr\vert ^{2} \bigr) . \end{aligned}$$
(3.5)

Similarly, we have

$$\begin{aligned}& \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{q ( x ) }- \bigl\vert {}^{ \mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr\vert ^{q(x)-2 }{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1}.^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \\& \quad \geq \frac{1}{2} \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{1} \big\vert ^{q(x)-2} \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{2}- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr) \end{aligned}$$
(3.6)

and

$$\begin{aligned}& \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \big\vert ^{q ( x ) }- \bigl\vert {}^{ \mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{q(x)-2 }{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2}.{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \\& \quad \geq \frac{1}{2} \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{2} \big\vert ^{q(x)-2} \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \big\vert ^{2}- \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \bigr\vert ^{2} \bigr). \end{aligned}$$
(3.7)

We put

$$ \Lambda _{1}= \bigl\{ x\in \Lambda : \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr\vert \geq \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \big\vert \bigr\} $$

and

$$ \Lambda _{1}^{c}= \bigl\{ x\in \Lambda : \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr\vert < \big\vert {}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \big\vert \bigr\} . $$

By (3.2), (3.4)–(3.7) and \((K_{0})\), we get

$$\begin{aligned} A :=&\mathcal{K} \bigl( J ( \omega _{1} ) \bigr) \biggl[ \int _{\Lambda _{1}} \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{1} \big\vert ^{p ( x ) }- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr\vert ^{p(x)-2 }{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1}.^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr)\,dx \\ &{} + \int _{\Lambda _{1}}\kappa ( x ) \bigl( \big\vert ^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{q ( x ) }- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \bigr\vert ^{q(x)-2 }{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1}.^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr)\,dx \biggr] \\ &{}\times \mathcal{K} \bigl( J ( \omega _{2} ) \bigr) \biggl[ \int _{\Lambda _{1}} \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{2} \big\vert ^{p ( x ) }- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{p(x)-2 }{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2}.^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \bigr)\,dx \\ &{} + \int _{\Lambda _{1}}\kappa ( x ) \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \big\vert ^{q ( x ) }- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{q(x)-2 }{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2}.^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr)\,dx \biggr] \\ \geq& \frac{1}{2}\mathcal{K} \bigl( J ( \omega _{1} ) \bigr) \bigg[ \int _{\Lambda _{1}} \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \bigr\vert ^{p ( x ) -2} \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx \\ &{} + \int _{\Lambda _{1}}\kappa ( x ) \big\vert {}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{q ( x ) -2}- \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{1} \big\vert ^{2 } - \bigl\vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{2} \bigr)\,dx ] \\ &{}-\frac{1}{2}\mathcal{K} \bigl( J ( \omega _{2} ) \bigr) \biggl[ \int _{\Lambda _{1}} \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{p ( x ) -2} \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ; \psi }\omega _{1} \big\vert ^{2 } - \bigl\vert ^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx \\ &{} + \int _{\Lambda _{1}}\kappa ( x ) \big\vert {}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \big\vert ^{q ( x ) -2}- \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{1} \big\vert ^{2 } - \bigl\vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{2} \bigr)\,dx \biggr] \\ \geq &\frac{1}{2}\mathcal{K} \bigl( J ( \omega _{2} ) \bigr) \biggl[ \int _{\Lambda _{1}} \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{p ( x ) -2}- \bigl\vert ^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{p ( x ) -2} \bigr) \\ &{}\times \bigl( \big\vert ^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{2} \bigr)\,dx \\ & {}+ \int _{\Lambda _{1}}\kappa ( x ) \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{q ( x ) -2}- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{q ( x ) -2} \bigr) \\ &{}\times \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx \biggr] \\ \geq &\frac{k_{0}}{2} \biggl[ \int _{\Lambda _{1}} \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{p ( x ) -2}- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{p ( x ) -2} \bigr) \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi } \omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{2} \bigr)\,dx \\ & {} + \int _{\Lambda _{1}}\kappa ( x ) \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{q ( x ) -2}- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{q ( x ) -2} \bigr) \\ &{}\times \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx \biggr] \\ \geq &0. \end{aligned}$$
(3.8)

So, we have

$$\begin{aligned} B :=&\mathcal{K} \bigl( J ( \omega _{1} ) \bigr) \biggl[ \int _{\Lambda _{1}^{c}} \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{1} \big\vert ^{p ( x ) }- \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr\vert ^{p(x)-2 }{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ; \psi } \omega _{1}.^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ; \psi } \omega _{2} \bigr)\,dx \\ &{}+ \int _{\Lambda _{1}^{c}}\kappa ( x ) \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{q ( x ) }- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \bigr\vert ^{q(x)-2 }{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1}.^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr)\,dx \biggr] \\ &{}\times \mathcal{K} \bigl( J ( \omega _{2} ) \bigr) \bigg[ \int _{\Lambda _{1}^{c}} \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{2} \big\vert ^{p ( x ) }- \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{p(x)-2 }{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ; \psi } \omega _{2}.{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ; \psi }\omega _{1} \bigr)\,dx \\ & {}+ \int _{\Lambda _{1}^{c}}\kappa ( x ) \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \big\vert ^{q ( x ) }- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{q(x)-2 }{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2}.^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr)\,dx \bigg] \\ \geq &\frac{1}{2}\mathcal{K} \bigl( J ( \omega _{1} ) \bigr) \biggl[ \int _{\Lambda _{1}^{c}} \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \bigr\vert ^{p ( x ) -2} \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx \\ & {} + \int _{\Lambda _{1}^{c}}\kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{q ( x ) -2}- \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{2} \bigr)\,dx \biggr] \\ &{}-\frac{1}{2}\mathcal{K} \bigl( J ( \omega _{2} ) \bigr) \biggl[ \int _{\Lambda _{1}^{c}} \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{p ( x ) -2} \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ; \psi }\omega _{1} \big\vert ^{2 } - \bigl\vert ^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx \\ & {} + \int _{\Lambda _{1}^{c}}\kappa ( x ) \big\vert {} ^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \big\vert ^{q ( x ) -2}- \bigl(\big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{2} \bigr)\,dx \biggr] \\ \geq &\frac{1}{2}\mathcal{K} \bigl( J ( \omega _{2} ) \bigr) \bigg[ \int _{\Lambda _{1}^{c}} \bigl( \big\vert {} ^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{p ( x ) -2}- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi }\omega _{2} \bigr\vert ^{p ( x ) -2} \bigr) \\ &{}\times \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{2 \mathbbm{ }} - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx \\ & {} + \int _{\Lambda _{1}^{c}}\kappa ( x ) \bigl( \big\vert {} ^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{q ( x ) -2}- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{q ( x ) -2} \bigr) \\ &{}\times \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx \bigg] \\ \geq &\frac{k_{0}}{2} \biggl[ \int _{\Lambda _{1}^{c}} \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{p ( x ) -2}- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{p ( x ) -2} \bigr) \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr\vert ^{2} \bigr)\,dx \\ & {}+ \int _{\Lambda _{1}^{c}}\kappa ( x ) \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{q ( x ) -2}- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{q ( x ) -2} \bigr) \\ &{}\times \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx \biggr] \\ \geq &0. \end{aligned}$$
(3.9)

Then, we get

$$\begin{aligned}& \begin{gathered} \bigl\langle \varphi (\omega _{1})- \varphi (\omega _{2}), \omega _{1}- \omega _{2} \bigr\rangle \\ \quad = \bigl\langle \varphi (\omega _{1}), \omega _{1} \bigr\rangle - \bigl\langle \varphi (\omega _{1}), \omega _{2} \bigr\rangle \\ \qquad {}+ \bigl\langle \varphi (\omega _{2}), \omega _{2} \bigr\rangle - \bigl\langle \varphi ( \omega _{2}), \omega _{1} \bigr\rangle \\ \quad =\mathcal{K} \bigl( J ( \omega _{1} ) \bigr) \biggl[ \int _{\Lambda } \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{1} \big\vert ^{p ( x ) }- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr\vert ^{p(x)-2 }{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1}.^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr)\,dx \\ \qquad {} + \int _{\Lambda }\kappa ( x ) \bigl(\big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1}\big\vert ^{q ( x ) }- \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{1} \bigr\vert ^{q(x)-2 } {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1}.^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr)\,dx \biggr] \\ \qquad {}+\mathcal{K} \bigl( J ( \omega _{2} ) \bigr)\end{gathered} \\& \begin{gathered} \qquad {}\times \biggl[ \int _{\Lambda _{1}^{c}} \bigl( \big\vert {}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2}\big\vert ^{p ( x ) }- \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi }\omega _{2} \bigr\vert ^{p(x)-2 }{}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2}.{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \bigr)\,dx \\ \qquad {} + \int _{\Lambda _{1}}\kappa ( x ) \big\vert {} ^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \big\vert ^{q ( x ) }- \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{2} \big\vert ^{q ( x ) -2 }-{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2}.^{ \mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr)\,dx \biggr] \\ \quad =A+B\geq 0.\end{gathered} \end{aligned}$$
(3.10)

Hence, \(\langle \varphi (\omega _{1})-\varphi (\omega _{2}), \omega _{1}- \omega _{2}\rangle >0\). On the other hand, using (3.8)–(3.10), we have

$$\begin{aligned} 0 =& \bigl\langle \varphi (\omega _{1})- \varphi (\omega _{2}), \omega _{1}- \omega _{2} \bigr\rangle \\ \geq& \frac{k_{0}}{2} \biggl[ \int _{\Lambda } \bigl( \big\vert {}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{p ( x ) -2}- \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{p ( x ) -2} \bigr) \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi }\omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx \\ &{}+ \int _{\Lambda }\kappa ( x ) \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{q ( x ) -2}- \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{q ( x ) -2} \bigr) \\ &{}\times \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi }\omega _{1} \big\vert ^{2 } - \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx \biggr] \\ \geq& 0. \end{aligned}$$
(3.11)

Taking this into consideration \(\kappa ( x ) \geq 0\) in Λ yields \(\vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \vert =|^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi }\omega _{2}|\) in a.e. Λ. Hence

$$ \mathcal{K} \bigl( J ( \omega _{1} ) \bigr) =\mathcal{K} \bigl( J ( \omega _{2} ) \bigr) $$

and from (3.10)–(3.11), we get

$$\begin{aligned} 0 =& \bigl\langle \varphi (\omega _{1})-\varphi (\omega _{2}), \omega _{1}- \omega _{2} \bigr\rangle \\ =& \bigg[ \int _{\Lambda } \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{p ( x ) -2}+\kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1}\big\vert ^{q ( x ) -2} \bigr) \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\omega _{1} \big\vert ^{2 } - \bigl\vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \bigr\vert ^{2} \bigr)\,dx , \end{aligned}$$

which leads to a contradiction \(\omega _{1}=\omega _{2}\) in \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \). This ensures that φ is strictly monotonic. □

Lemma 3.3

Let \((K_{0})\) be satisfied, and \(\omega _{1},\omega _{2}\in \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \) verify

$$ \mathcal{K} \bigl( J ( \omega _{1} ) \bigr) \mathcal{R}_{p ( . ) ,q ( . ) }^{\kappa ( . ) } \omega _{1}\leq \mathcal{K} \bigl( J ( \omega _{2} ) \bigr) \mathcal{R}_{p ( . ) ,q ( . ) }^{ \kappa ( . ) }\omega _{2} $$
(3.12)

and \(\omega _{1}\leq \omega _{2}\) on ∂Λ, i.e., \(( \omega _{1}-\omega _{2} ) ^{+}\in \mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ) \). Then, \(\omega _{1}\leq \omega _{2}\) a.e., in Λ.

Proof

We choose the test function \(\chi = ( \omega _{1}-\omega _{2} ) ^{+} \) in (3.12), then, by (3.1), the following is obtained

$$\begin{aligned}& \bigl\langle \varphi (\omega _{1})-\varphi (\omega _{2})), ( \omega _{1}-\omega _{2} ) ^{+} \bigr\rangle \\& \quad = \mathcal{K} \bigl( J ( \omega _{1} ) \bigr) \int _{ \Lambda \cap {}[ \omega _{1}>\omega _{2}]} \bigl( \big\vert {} ^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{1} \big\vert ^{p ( x ) -2}{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \\& \qquad {}+ \kappa ( x ) \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \big\vert ^{q ( x ) -2}{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{1} \bigr) \\& \qquad {}\times {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } ( \omega _{1}-\omega _{2} ) ^{+}\,dx\\& \qquad {} - \mathcal{K} \bigl( J ( \omega _{2} ) \bigr) \int _{ \Lambda \cap {}[ \omega _{1}>\omega _{2}]} \bigl( \big\vert {} ^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \omega _{2} \big\vert ^{p ( x ) -2}{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \\& \qquad {}+ \kappa ( x ) \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \big\vert ^{q ( x ) -2}{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\omega _{2} \bigr) \\& \qquad {}\times {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } ( \omega _{1}-\omega _{2} ) ^{+}\,dx\\& \quad \leq 0. \end{aligned}$$

By monotonicity of φ, we get

$$ \bigl\langle \varphi (\omega _{1})-\varphi (\omega _{2})), ( \omega _{1}-\omega _{2} ) ^{+} \bigr\rangle = \bigl\langle \varphi (\omega _{1})- \varphi (\omega _{2})), ( \omega _{1}-\omega _{2} ) ^{+} \bigr\rangle _{\Lambda \cap {}[ \omega _{1}>\omega _{2}]}\geq 0. $$

Hence, \(\langle \varphi (\omega _{1})-\varphi (\omega _{2}))\), \(( \omega _{1}-\omega _{2} ) ^{+}\rangle =0\). Through Lemma 3.2, we conclude that \(( \omega _{1}-\omega _{2} ) ^{+}=0\), and thus we complete the proof. □

Lemma 3.4

Assuming that \((K_{0})\) is satisfied, and \(\sigma \in L^{\infty }(\Lambda )\), the problem

$$ \textstyle\begin{cases} \mathcal{K} ( J ( \xi ) ) \mathcal{R}_{p ( . ) ,q ( . ) }^{\kappa ( . ) } \xi =\sigma (x) & \textit{in } \Lambda \\ \xi =0 & \textit{on }\partial \Lambda \end{cases} $$
(3.13)

accepts a unique solution in \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \).

Proof

According to \(( K_{0} ) \) and Lemma 2.2 for all \(\Vert \xi \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }>1\), we have

$$\begin{aligned} \lim_{n\rightarrow +\infty } \frac{\langle \varphi (\xi ), \xi \rangle }{ \Vert \xi \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }} \geq &\lim _{n\rightarrow +\infty } \frac{k_{0}\rho _{\mathcal{A}} ( \vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi \vert ) }{ \Vert \xi \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }} \\ \geq &k_{0} \Vert \xi \Vert _{\mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ) }^{p^{-}}. \end{aligned}$$
(3.14)

Therefore,

$$ \lim_{n\rightarrow +\infty } \frac{\langle \varphi (\xi ), \xi \rangle }{ \Vert \xi \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }}=+ \infty , $$

that is, φ is coercive; thus, φ is a surjection. By applying the theorem of Minty-Browder [37], the equation φ \((\xi )=\sigma \) is uniquely solvable in \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \). □

In the following lemma, \(l_{0}\) indicates the best constant of \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \). \(\hookrightarrow L^{2} ( \Lambda ) \) by \(l_{0}\). Then,

$$ \Vert \xi \Vert _{L^{2}(\Lambda )}\leq l_{0} \Vert \xi \Vert _{\mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ) }\quad \text{for all }\xi \in \mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ). $$

Lemma 3.5

We suppose that \((K_{0})\) is satisfied. Let \(\varrho >0\) and \(\xi _{\varrho }\) be the unique solution of the following

$$ \textstyle\begin{cases} \mathcal{K} ( J ( \xi _{\varrho } ) ) \mathcal{R}_{p ( . ) ,q ( . ) }^{\kappa ( . ) } \xi _{\varrho }=\varrho & \textit{in } \Lambda \\ \xi _{\varrho }=0 & \textit{on }\partial \Lambda .\end{cases} $$
(3.15)

Put \(\delta =\frac{k_{0}p^{-}}{2C_{0}|\Lambda |^{\frac{1}{2}}}\). Then, when \(\varrho \geq \delta \), \(\xi _{\varrho }\in L^{\infty }(\Lambda )\) with

$$ \Vert \xi _{\varrho } \Vert _{\infty }\leq l_{1}^{\star } \mathcal{K} \bigl(l_{2}^{ \star }\varrho ^{(p^{-})^{\prime }} \bigr) \varrho ^{\frac{1}{p^{-}-1}}, $$

and when \(\varrho <\delta \),

$$ |\!|\!|\xi _{\varrho }|\!|\!|_{\infty }\leq l_{\star }\varrho ^{ \frac{1}{p^{+}-1}}, $$

in which \(l_{1}^{\star }\), \(l_{2}^{\star }\), and \(l_{\star }>0\) are dependent on Λ, \(k_{0}\) and p.

Proof

Let \(\zeta \geq 0\) be fixed, and put \(\Lambda _{\zeta }=\{x\in \Lambda : \xi _{\varrho }(x)>\zeta \}\) and \(\xi _{\varrho }\geq 0\) using comparison principle. Testing equation (3.15) with \((\xi _{\varrho }-\zeta )^{+}\) and from the Young inequality

$$\begin{aligned}& \int _{\Lambda } \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \xi _{\varrho } \big\vert ^{p ( x ) }+\kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\xi _{\varrho } \big\vert ^{q ( x ) } \bigr)\,dx \\& \quad = \frac{\varrho }{\mathcal{K} ( J ( \xi _{\varrho } ) ) } \int _{\Lambda _{\zeta }}(\xi _{\varrho }-\zeta )^{+}\,dx \end{aligned}$$
(3.16)
$$\begin{aligned}& \quad \leq \frac{\varrho \vert \Lambda _{\zeta } \vert ^{\frac{1}{2}}}{\mathcal{K} ( J ( \xi _{\varrho } ) ) } \bigl\Vert (\xi _{\varrho }- \zeta )^{+} \bigr\Vert _{L^{2}(\Lambda )} \\& \quad \leq \frac{\varrho \vert \Lambda _{\zeta } \vert ^{\frac{1}{2}}l_{0}}{k_{0}}\int _{\Lambda _{\zeta }} \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \xi _{\varrho } \bigr\vert \,dz \\& \quad \leq \frac{\varrho \vert \Lambda _{\zeta } \vert ^{\frac{1}{2}}l_{0}}{k_{0}}\int _{\Lambda _{\zeta }} \bigl\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \xi _{\varrho } \bigr\vert ^{p ( x ) }\,dz \\& \quad \leq \frac{\varrho \vert \Lambda _{\zeta } \vert ^{\frac{1}{2}}l_{0}}{k_{0}} \biggl( \int _{\Lambda _{\zeta }} \frac{\varepsilon ^{p ( x ) } \vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi _{\varrho } \vert ^{p(z)}}{p ( x ) }\,dx+ \int _{\Lambda _{\zeta }} \frac{\varepsilon ^{-p^{\prime } ( x ) }}{p^{\prime } ( x ) }\,dx \biggr). \end{aligned}$$
(3.17)

For \(\varrho \geq \delta \), taking

$$ \epsilon = \biggl( \frac{k_{0}p^{-}}{2\varrho \vert \Lambda \vert ^{\frac{1}{2}}l_{0}} \biggr) ^{\frac{1}{p^{-}}}= \biggl( \frac{\delta }{\varrho } \biggr) ^{ \frac{1}{p^{-}}}, $$
(3.18)

one has \(\epsilon \leq 1\). Thus,

$$\begin{aligned}& \frac{\varrho \vert \Lambda _{\zeta } \vert ^{\frac{1}{2}}l_{0}}{k_{0}} \int _{ \Lambda _{\zeta }} \frac{\varepsilon ^{p ( x ) } \vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi _{\varrho } \vert ^{p(x)}}{p ( x ) }\,dx \\& \quad \leq \frac{\varrho \vert \Lambda _{\zeta } \vert ^{\frac{1}{2}}l_{0}\epsilon ^{p^{-}}}{k_{0}p^{-}} \int _{\Lambda _{\zeta }} \bigl\vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \xi _{\varrho } \bigr\vert ^{p(x)}\,dx, \\& \quad \leq \frac{\varrho \vert \Lambda _{\zeta } \vert ^{\frac{1}{2}}l_{0}\epsilon ^{p^{-}}}{k_{0}p^{-}} \int _{\Lambda } \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \xi _{\varrho } \big\vert ^{p ( x ) }\,dx+\kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi _{\varrho } \big\vert ^{q ( x ) } \bigr)\,dx \\& \quad = \frac{1}{2} \int _{\Lambda _{\zeta }} \bigl( \big\vert {}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \xi _{\varrho } \big\vert ^{p ( x ) }\,dx+\kappa ( x ) \big\vert {} ^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi _{\varrho } \big\vert ^{q ( x ) } \bigr)\,dx. \end{aligned}$$
(3.19)

From (3.16) and (3.19), we get

$$\begin{aligned}& \int _{\Lambda _{\zeta }} \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \xi _{\varrho } \big\vert ^{p ( x ) }+\kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi _{\varrho } \big\vert ^{q ( x ) } \bigr)\,dx \\& \quad \leq \frac{2\varrho \vert \Lambda _{\zeta } \vert ^{\frac{1}{2}}l_{0}}{k_{0}(p^{+})^{\prime }} \int _{\Lambda _{\zeta }}\epsilon ^{-(p^{-})^{ \prime }}\,dx= \frac{2\varrho l_{0}\epsilon ^{-(p^{-})^{\prime }}}{k_{0} ( p^{+} ) ^{\prime }} \vert \Lambda _{\zeta } \vert ^{ \frac{3}{2}}. \end{aligned}$$
(3.20)

Similarly, with \(\xi _{\varrho }\) as test function in (3.15), we also obtain

$$ \int _{\Lambda } \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \xi _{\varrho } \big\vert ^{p ( x ) }+\kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\xi _{\varrho } \big\vert ^{q ( x ) } \bigr)\,dx\leq \frac{2\varrho C_{0}\epsilon ^{-(p^{-})^{\prime }}}{k_{0}(p^{+})^{\prime }} \vert \Lambda \vert ^{\frac{3}{2}}. $$
(3.21)

From (3.17), (3.21), and with \(\mathcal{K}\) being monotonic, we find

$$\begin{aligned} \int _{\Lambda _{\zeta }}(\xi _{\varrho }-\zeta )^{+}\,dx =& \frac{\mathcal{K} ( J ( \xi _{\varrho } ) ) }{\varrho } \int _{ \Lambda _{\zeta }} \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \xi _{\varrho } \big\vert ^{p ( x ) }+\kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\xi _{\varrho } \big\vert ^{q ( x ) } \bigr)\,dx \\ \leq &\mathcal{K} \biggl( \frac{2\varrho l_{0}\epsilon ^{-(p^{-})^{\prime }}}{k_{0}p^{-}(p^{+})^{\prime }} \vert \Lambda \vert ^{\frac{3}{2}} \biggr) \frac{2l_{0}\epsilon ^{-(p^{-})^{\prime }}}{k_{0}(p^{+})} \vert \Lambda _{\zeta } \vert ^{\frac{3}{2}}. \end{aligned}$$

Through Lemma 5.1 in [13], the following is achieved

$$ \Vert \xi _{\varrho } \Vert _{\infty }\leq \mathcal{K} \biggl( \frac{2\varrho l_{0}\epsilon ^{-(p^{-})^{\prime }}}{k_{0}p^{-}(p^{+})^{\prime }} \vert \Lambda \vert ^{\frac{3}{2}} \biggr) \frac{6l_{0}\epsilon ^{-(p^{-})^{\prime }}}{k_{0}(p^{+})^{\prime }} \vert \Lambda \vert ^{\frac{1}{2}}. $$
(3.22)

It follows from (3.18) and (3.22) that

$$ \Vert v_{\varrho } \Vert _{\infty }\leq l_{1}^{\star } \mathcal{K} \bigl( l_{2}^{ \star }\varrho ^{(p^{-})^{\prime }} \bigr) \varrho ^{ \frac{1}{p^{-}-1}}, $$

where

$$ l_{1}^{\star }:= \frac{3(2l_{0})^{(p^{-})^{\prime }}}{(p^{+})k_{0}^{(p^{-})\prime }(p^{-})^{\frac{1}{p^{-}-1}}} \vert \Lambda \vert ^{ \frac{(p^{-})^{{\prime }}}{2}}, $$

and

$$ l_{2}^{\star }:= \frac{(2l_{0})^{(p^{-})^{\prime }}}{(p^{+})^{\prime }k_{0}^{(p^{-})\prime }(p^{-})^{(p^{-})^{\prime }}} \vert \Lambda \vert ^{1+\frac{(p^{-})^{\prime }}{2}}. $$

When \(\varrho <\delta \), taking

$$ \varepsilon = \biggl( \frac{k_{0}p^{-}}{2\varrho \vert \Lambda \vert ^{\frac{1}{2}}l_{0}} \biggr) ^{\frac{1}{p^{+}}}= \biggl( \frac{\delta }{\varrho } \biggr) ^{ \frac{1}{p^{+}}}, $$

we have \(\epsilon <1\). By the same approach, we get

$$ \Vert \xi _{\varrho } \Vert _{\infty }\leq l_{\star }\varrho ^{ \frac{1}{p^{+}-1}}, $$

where

$$ l_{\ast }= \frac{3(2l_{0})^{(p^{+})^{\prime }}}{(p^{+})^{\prime }k_{0}^{(p^{+})^{\prime }}(p^{-})^{\frac{1}{p^{+}-1}}} \vert \Lambda \vert ^{\frac{(p^{+})^{\prime }}{2}} \mathcal{K} \biggl( \frac{(2\delta l_{0})^{(p^{+})^{\prime }}}{(p^{+})^{\prime }k_{0}^{(p^{+})^{{\prime }}}(p^{-})^{(p^{+})^{\prime }}} \vert \Lambda \vert ^{1+\frac{(p^{+})^{\prime }}{2}} \biggr) . $$

 □

4 Proof of Theorem 1.1

We say that \((\underline{\xi },\overline{\xi })\) are sub-supersolution of problem (1.1) if \(\underline{\xi },\overline{\xi }\in L^{\infty } ( \Lambda ) \), \(\underline{\xi }\leq \overline{\xi }\) a.e., in Λ and

$$\begin{aligned}& \textstyle\begin{cases} \mathcal{K} ( J ( \underline{\xi } ) ) \int _{\Lambda } ( \vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\underline{\xi } \vert ^{p ( x ) -2}.^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi }\underline{\xi } \\ \qquad {}+\kappa ( x ) \vert ^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\underline{\xi } \vert ^{q ( x ) -2}. \vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\underline{\xi } \vert ^{q ( x ) } ) .^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\eta \,dx \\ \quad \leq \int _{\Lambda }\sigma (x)\underline{\xi }^{\lambda (x)-1} \eta \,dx+\int _{\Lambda }g(x,\underline{\xi })\eta \,dx\end{cases}\displaystyle \end{aligned}$$
(4.1)
$$\begin{aligned}& \textstyle\begin{cases} \mathcal{K} ( J ( \overline{\xi } ) ) \int _{\Lambda } ( \vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\overline{\xi } \vert ^{p ( x ) -2} .{}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ; \psi }\overline{\xi } \\ \qquad {}+\kappa ( x ) \vert ^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\overline{\xi } \vert ^{q ( x ) -2}. \vert ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi }\overline{\xi } \vert ^{q ( x ) } ) .^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\eta \,dx \\ \quad \geq \int _{\Lambda }\sigma (x)\overline{\xi }^{\lambda (x)-1} \eta \,dx+\int _{\Lambda }g ( x,\overline{\xi } ) \eta \,dx,\end{cases}\displaystyle \end{aligned}$$
(4.2)

for all arbitrary nonnegative function \(\eta \in \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \).

Lemma 4.1

Let \((K_{0})\) and \((g_{1})\)–\((g_{2})\) be fulfilled. Then, there is \(\sigma _{\star }>0\) such that (1.1) has sub-supersolution \((\underline{\xi },\overline{\xi })\in (\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \cap L^{\infty } ( \Lambda ) \times (\mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ) \cap L^{\infty } ( \Lambda ) )\) with \(\Vert \xi \Vert _{\infty }\leq l\), provided that \(\|\sigma \|_{\infty }<\alpha \), where l is defined in \((g_{1})\).

Proof

Using the Lemmas 3.2, 3.3, and 3.4, there exists a unique solution \(( 0,0 ) \leq (\underline{\xi },\overline{\xi })\in ( \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \cap L^{\infty } ( \Lambda ) ) \) of the following problems

$$ \textstyle\begin{cases} \mathcal{K} ( J ( \underline{\xi } ) ) \mathcal{R}_{p ( . ) ,q ( . ) }^{\kappa ( . ) }= \sigma (x) & \text{in } \Lambda \\ \underline{\xi }=0 & \text{on }\partial \Lambda \end{cases} $$
(4.3)

and

$$ \textstyle\begin{cases} \mathcal{K} ( J ( \overline{\xi } ) ) \mathcal{R}_{p ( . ) ,q ( . ) }^{\kappa ( . ) }=1+ \sigma (x) & \text{in } \Lambda \\ \overline{\xi }=0 & \text{on }\partial \Lambda \end{cases} $$
(4.4)

such that

$$ \Vert \underline{\xi } \Vert _{\infty }\leq \max \bigl(l_{1}^{\star } \mathcal{K} \bigl(C_{2}^{\star } \Vert \sigma \Vert _{\infty }^{(p^{-})^{\prime }} \bigr) \Vert \sigma \Vert ^{ \frac{1}{p^{-}-1}}, l_{\star } \Vert \sigma \Vert ^{\frac{1}{p^{+}-1}} \bigr), $$

where \(l_{1}^{\star }\), \(l_{2}^{\star }\), and \(l_{\star }\) are given in Lemma 3.5. Next, consider that \(\mathcal{K}\) is nondecreasing and there exits \(\alpha >0\) relying only on \(l_{1}^{\star }\), \(l_{2}^{\star }\), and \(l_{\star }\) such that \(\|\underline{\xi }\|_{\infty }\leq l\), provided that \(\|\sigma \|_{\infty }<\alpha \). Moreover, by Lemma 3.2, \(\underline{\xi }\leq \overline{\xi }\).

Let ξ in \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \). By (4.1) and \((g_{1})\), we get

$$\begin{aligned}& \mathcal{K} \bigl( J ( \underline{\xi } ) \bigr) \int _{\Lambda } \bigl(\big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \underline{\xi } \big\vert ^{p ( x ) -2} .{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi }\underline{\xi } \\& \qquad {}+\kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \underline{\xi } \big\vert ^{q ( x ) -2}. \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\underline{\xi } \bigr\vert ^{q ( x ) } \bigr) .^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \eta \,dx \\& \qquad {}- \int _{\Lambda }\sigma (x)\underline{\xi }^{\lambda (x)-1} \eta \,dx+ \int _{\Lambda }g(x,\underline{\xi })\eta \,dx \\& \quad \leq \int _{\Lambda }\sigma (x)\eta \,dx- \int _{ \Lambda }\sigma (x)\underline{\xi }^{\lambda (x)-1}\eta \,dx- \int _{\Lambda }\sigma (x) \bigl( 1-\underline{\xi }^{\lambda (x)-1} \bigr) \eta \,dx=0. \end{aligned}$$

From (4.2) and \((g_{2})\), we have

$$\begin{aligned}& \mathcal{K} \bigl( J ( \overline{\xi } ) \bigr) \int _{\Lambda } \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \overline{\xi } \big\vert ^{p ( x ) -2} .{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ; \psi }\overline{\xi } \\& \qquad {}+\kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \overline{\xi } \big\vert ^{q ( x ) -2}. \bigl\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma , \delta ;\psi }\overline{\xi } \bigr\vert ^{q ( x ) } \bigr) .^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \eta \,dx \\& \qquad {} - \int _{\Lambda }\sigma (x)\overline{\xi }^{\lambda (x)-1} \eta \,dx- \int _{\Lambda }g ( x,\overline{\xi } ) \eta \,dx \\& \quad \geq \int _{\Lambda } \bigl(1-A_{\infty } \Vert \sigma \Vert _{\infty } \bigr)\eta \,dx, \end{aligned}$$

where

$$ A_{\infty }:=\max \bigl( \Vert \overline{\xi } \Vert _{\infty }^{\lambda ^{+}-1}, \Vert \overline{\xi } \Vert _{\infty }^{\lambda ^{-}-1} \bigr)+\max \bigl( \Vert \overline{\xi } \Vert _{\infty }^{\gamma ^{+}-1}, \Vert \overline{\xi } \Vert _{\infty }^{\gamma ^{-}-1} \bigr). $$

Thus, choosing \(\alpha _{\star }=\min ( \alpha ,\frac{1}{A_{\infty }} ) \) yields

$$ \int _{\Lambda } \bigl(1-A_{\infty } \Vert \gamma \Vert _{\infty } \bigr)\eta \,dx\geq 0 \quad \text{for } \Vert \sigma \Vert _{\infty }< \alpha _{\star }. $$

Hence, we get the expected result.

We now highlight the proof of Theorem 1.1:

Let \(\underline{\xi },\overline{\xi }\in \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) .\cap L^{\infty } ( \Lambda )\). According to the previous lemma, we can write

$$ h(x, t)=\textstyle\begin{cases} \sigma (x)\overline{\xi }(x)^{\lambda (x)-1}+g(x,\overline{\xi }(x)) & \text{if } t>\overline{\xi }(x) \\ \sigma (x)\overline{\xi }t^{\lambda (x)-1}+g(x, t) & \text{if } \underline{\xi }(x)\leq t\leq \overline{\xi }(x) \\ \sigma (x)\underline{\xi }(x)^{\lambda (x)-1}+g(x,\underline{\xi }(x)) & \text{if } t< \underline{\xi }(x).\end{cases} $$

We define the problem

$$ \textstyle\begin{cases} \mathcal{K} ( J ( \xi ) ) \mathcal{R}_{p ( . ) ,q ( . ) }^{\kappa ( . ) }=h(x, \xi ) & \text{in } \Lambda \\ \xi =0 & \text{on }\partial \Lambda \end{cases} $$
(4.5)

and the energy functional attached to it \(\mathcal{I}:\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \rightarrow \mathbb{R}\) given by

$$ \mathcal{I}(\xi )=\widehat{\mathcal{K}} \bigl(J ( \xi ) \bigr)- \int _{ \Lambda }H(x, \xi )\,dx, $$

where \(H(x,t)=\int _{0}^{t}h(x,\tau )\,d\tau \). Then, \(\mathcal{I}\in C^{1}\), it is clear that the critical points for \(\mathcal{I}\) are solutions to (4.5). According to \((K_{0})\), \(\mathcal{I}\) is coercive and sequentially weakly lower semicontinuous. Hence, \(\mathcal{I}\) attains its minimum in the weakly closed subset \([\underline{\xi },\overline{\xi }]\cap \mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ) \) at some \(\xi _{0}\), which represents a critical point in \(\mathcal{I}\). The proof of Theorem 1.1 is complete. □

5 Proof of Theorem 1.2

Let the function f be defined as

$$ f(x, t)=\textstyle\begin{cases} \sigma (x)t^{\lambda (x)-1}+g(x, t) & \text{if } t\geq \underline{\xi }(x), \\ \sigma (x)\underline{\xi }(x)^{\lambda (x)-1}+g(x,\underline{\xi }(x)) & \text{if } t\leq \underline{\xi }(x).\end{cases} $$

Also, one can look at the problem

$$ \textstyle\begin{cases} \mathcal{K} ( J ( \xi ) ) \mathcal{R}_{p ( . ) ,q ( . ) }^{\kappa ( . ) }=f(x, \xi ) & \text{in } \Lambda \\ \xi =0 & \text{on } \partial \Lambda .\end{cases} $$
(5.1)

To find solutions for (4.5), we follow the approach of identifying critical points of the \(C^{1}\)-functional \(\mathcal{J}:\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \rightarrow \mathbb{R}\), defined as:

$$ \mathcal{J}(\xi )=\widehat{\mathcal{K}} \bigl( J ( \xi ) \bigr) - \int _{\Lambda }F(x, \xi )\,dx, $$

where \(F(x, t)=\int _{0}^{t}f(x,\tau )\,d\tau \).

Lemma 5.1

Assuming that the conditions of Theorem 1.2are satisfied, the functional \(\mathcal{J}\) satisfies the Palais-Smale condition.

Proof

Assume that \(\{\xi _{n}\}\subset \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \) is a sequence such that

$$ \mathcal{J}(\xi _{n})\rightarrow c\in \mathbb{R}\quad \text{and}\quad \mathcal{J}(\xi _{n})\rightarrow 0\quad \text{in } \bigl( \mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ) \bigr) ^{\ast }. $$
(5.2)

Here, we prove that \(\{\xi _{n}\}\) is bounded in \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \).

Case 1: \(\lambda ^{-}>\frac{p^{+}}{1-\theta }\). Let \(\mu _{0}\in ( \frac{p^{+}}{1-\theta }, \min (\mu , \lambda ^{-}) ) \). By \((K_{0})-(K_{1})\), \((g_{3})\), and Lemmas 2.3 and 2.4, for sufficiently large n, we obtain

$$\begin{aligned} 1+c+ \Vert \xi _{n} \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) } \geq &\mathcal{J}( \xi _{n})-\frac{1}{\mu _{0}} \bigl\langle \mathcal{J}^{\prime }( \xi _{n}), \xi _{n} \bigr\rangle \\ \geq &(1-\theta )\mathcal{K} \bigl(J(\xi _{n}) \bigr)J(\xi _{n}) \\ &{}-\frac{1}{\mu _{0}}\mathcal{K} \bigl(J(\xi _{n}) \bigr) \int _{\Lambda } \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \xi _{n}\big\vert ^{p ( x ) }\,dx+\kappa ( x ) \big\vert {} ^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi _{n} \big\vert ^{q ( x ) } \bigr)\,dx \\ &{}+ \int _{\Lambda } \biggl( \frac{1}{\mu _{0}}f(x, \xi _{n})\xi _{n}-F(x, \xi _{n}) \biggr)\,dx \\ \geq &k_{0} \biggl( \frac{1-\theta }{p^{+}}-\frac{1}{\mu _{0}} \biggr) \bigl( \Vert \xi _{n} \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }^{p^{-}}-1 \bigr) \\ &{}+ \int _{ [ \xi _{n}\geq \underline{\xi } ] } \biggl( \frac{1}{\mu _{0}}g(x, \xi _{n}) \xi _{n}-H(x, \xi _{n}) \biggr)\,dx \\ &{}+ \int _{[\xi _{n}>\underline{\xi }]} \biggl( \frac{1}{\mu _{0}}- \frac{1}{q(x)} \biggr) \sigma (x)\xi _{n}^{\lambda (x)}\,dx-C_{1} \Vert \xi _{n} \Vert _{ \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }-C_{2} \\ \geq &k_{0} \biggl( \frac{1-\theta }{p_{M}^{+}}-\frac{1}{\mu _{0}} \biggr) \bigl( \Vert \xi _{n} \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }^{p^{-}}-1 \bigr) -C_{1} \Vert \xi _{n} \Vert _{\mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ) }-C_{2}, \end{aligned}$$

where \(C_{1},C_{2}>0\). Thus, the sequence \(\{\xi _{n}\}\) is bounded in \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \) as \(p^{-}>1\).

Case 2: \(p>\lambda ^{+-}\). Using \((K_{0})\)–\((K_{1})\), \((g_{3}) \), and Lemmas 2.3 and 2.4, we get

$$\begin{aligned} 1+c+ \Vert \xi _{n} \Vert _{{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }} \geq &\mathcal{J}( \xi _{n})-\frac{1}{\mu } \bigl\langle \mathcal{J}^{\prime }( \xi _{n}), \xi _{n} \bigr\rangle \\ \geq &k_{0} \biggl( \frac{1-\theta }{\lambda ^{+}}-\frac{1}{\mu } \biggr) \bigl( \Vert \xi _{n} \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }^{p^{-}}-1 \bigr) \\ &{}+ \int _{[\xi _{n}>\underline{\xi }]} \biggl( \frac{1}{\mu }g(x, \xi _{n})\xi _{n}-H(x, \xi _{n}) \biggr)\,dx \\ &{}+ \int _{[\xi _{n}>\underline{\xi }]} \biggl( \frac{1}{\mu }- \frac{1}{\lambda (x)} \biggr) \sigma (x)\xi _{n}^{\lambda (x)}\,dx-C_{3} \Vert \xi _{n} \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }-C_{4} \\ \geq &k_{0} \biggl( \frac{1-\theta }{\lambda ^{+}}-\frac{1}{\mu } \biggr) \bigl( \Vert \xi _{n} \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }^{p^{-}}-1 \bigr) \\ &{}-C_{5} \bigl( \Vert \xi _{n} \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }^{\lambda ^{+}}+ \Vert \xi _{n} \Vert _{\mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ) }^{\lambda ^{-}} \bigr) \\ &{}-C_{3} \Vert \xi _{n} \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }-C_{4}, \end{aligned}$$

where \(C_{3}\), \(C_{4}\), and \(C_{5}>0\). Thus, \(\{\xi _{n}\}\) is bounded in \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \) and is proved because \(p^{-}>\lambda ^{+}\). Further, we have

$$ \textstyle\begin{cases} \xi _{n}\rightharpoonup \xi& \text{in }\mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ) \\ \xi _{n}\rightarrow \xi & \text{a.e. in } \Lambda \\ \xi _{n}\rightarrow \xi & \text{in } L^{w(x)}(\Lambda ) \text{ with }1< w^{-}\leq w^{+}< (p^{\star })^{-}.\end{cases} $$
(5.3)

Thus,

$$\begin{aligned} o_{n}(1) =& \bigl\langle \mathcal{J}^{\prime }(\xi _{n}), \xi _{n}-\xi \bigr\rangle \\ =&\mathcal{K} \bigl(J(\xi _{n}) \bigr) \int _{\Lambda } \bigl( \big\vert {}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi _{n} \big\vert ^{p ( x ) -2}+\kappa ( x ) \big\vert {}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \xi _{n} \big\vert ^{q ( x ) -2}.{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } ( \xi _{n}- \xi ) \bigr)\,dx \\ &{}- \int _{\Lambda }f(x, \xi _{n}) (\xi _{n}-\xi )\,dx. \end{aligned}$$

From the Holder inequality \((g_{2})\), (5.3), we get

$$ \int _{\Lambda }f(x, \xi _{n}) (\xi _{n}-\xi )\rightarrow 0 $$

so that

$$ \mathcal{K} \bigl(J(\xi _{n}) \bigr) \int _{\Lambda } \bigl( \big\vert {}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }\xi _{n} \big\vert ^{p ( x ) -2}+\kappa ( x ) \big\vert {} ^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \xi _{n} \big\vert ^{q ( x ) -2}.{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } ( \xi _{n}- \xi ) \bigr)\,dx \rightarrow 0. $$

From the hypothesis \((K_{0})\), we get

$$ \int _{\Lambda } \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi } \xi _{n} \big\vert ^{p ( x ) -2}+ \kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }\xi _{n} \big\vert ^{q ( x ) -2}.^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } ( \xi _{n}-\xi ) \bigr)\,dx\rightarrow 0. $$

Thus, \(\xi _{n}\rightarrow \xi \) in \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda )\). From the \((S_{+})\) property, we finish the proof.

Combining with Lemma 2.3, we have \(v_{n}\rightarrow v\) in \(\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \). □

Lemma 5.2

Assuming that the conditions of Theorem 1.2are satisfied, for \(\|\sigma \|_{\infty }\) sufficiently small, we have

(i) \(\exists \varsigma >0\) and \(\vartheta >\|\underline{\xi }\|_{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }\) such that

$$ \mathcal{J}(\underline{\xi })< 0< \varsigma \leq \inf_{\xi \in \partial B_{\vartheta }(0)} \mathcal{J}(\xi ) ; $$

(ii) \(\exists e\in \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \) such that \(\|e\|_{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }>2 \vartheta \) and \(\mathcal{J}(e)<\varsigma \).

Proof

(i) We choose \(\eta =\underline{\xi }\) in the first inequality of (4.1). By applying the nondecreasing property to \(\mathcal{K}\), we have

$$\begin{aligned} \mathcal{J}(\underline{\xi }) =&\mathcal{K} \bigl(J(\underline{\xi }) \bigr)- \int _{\Lambda }F(x, \xi )\,dx \\ \leq &\mathcal{K} \bigl(J(\underline{\xi }) \bigr)J(\underline{\xi })- \int _{ \Lambda }\sigma (x)\underline{\xi }^{\lambda (x)}\,dx- \int _{\Lambda }g(x, \underline{\xi })\underline{\xi }\,dx \\ < &\mathcal{K} \bigl(J(\underline{\xi }) \bigr) \int _{\Lambda } \bigl( \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\alpha ,\beta ;\psi } \underline{\xi } \big\vert ^{p(x)}+\kappa ( x ) \big\vert {}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \underline{\xi } \big\vert ^{q ( x ) } \bigr)\,dx \\ &{}- \int _{\Lambda }\sigma (x)\underline{\xi }^{\lambda (z)}\,dx- \int _{ \Lambda }g(x,\underline{\xi })\underline{\xi }\,dx \\ \leq &0. \end{aligned}$$

Therefore, \(\mathcal{J}(\underline{\xi })<0\). Further, assume that \(\xi \in \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \) with \(\|\xi \|_{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }\geq 1\). By \((K_{0})\), \((g_{2})\), (3.12) Lemmas 2.3 and 2.4, we infer

$$ \mathcal{J}(\xi )\geq \frac{k_{0}}{q^{+}} \bigl( \Vert \xi \Vert _{X_{0}}^{p^{-}}-1 \bigr) -C_{6} \Vert \sigma \Vert _{\infty } \bigl( \Vert \xi \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }+ \Vert \xi \Vert _{ \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }^{\lambda ^{+}}+ \Vert v \Vert _{ \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }^{\gamma ^{+}} \bigr) -C_{7}, $$

where \(C_{6},C_{7}>0\). Observe that one can choose \(\varsigma >0\) and \(\vartheta >\|\underline{\xi }\|_{{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }}\) such that

$$ \frac{k_{0}}{q^{+}} \bigl( \Vert \vartheta \Vert _{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }^{p^{-}}-1 \bigr)-C_{7}\geq 2\varsigma . $$

Then, letting \(\|\sigma \|_{\infty }\leq \frac{\varsigma }{C_{6}(\vartheta +\vartheta ^{\lambda ^{+}}+\vartheta ^{\gamma ^{+}})}\), this implies that \(\mathcal{J}(\xi )\geq \varsigma \) for \(\|\xi \|_{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }=\vartheta \).

(ii) By \((K_{1})\), there is \(C_{8}>0\) such that

$$ \widehat{\mathcal{K}}(t)\leq C_{8}t^{\frac{1}{1-\theta } } \quad \text{for all }t>1. $$
(5.4)

From (5.2) and \(( g_{3} ) \), for all \(t>1\), we have

$$\begin{aligned} \mathcal{J}(t\underline{\xi }) =&\mathcal{K} \bigl(J(t\underline{\xi }) \bigr)- \int _{\Lambda }F(x, t\underline{\xi })\,dx \\ \leq &C_{7}t^{\frac{q^{+}}{1-\theta }} \bigl(J(\underline{\xi }) \bigr)^{ \frac{1}{1-\theta }}-t^{\lambda ^{-}} \int _{\Lambda }\sigma (x) \underline{\xi }^{\lambda (x)}\,dx-C_{8}t^{\mu } \int _{\Delta }\underline{\xi }^{\mu }\,dz+C_{9}. \end{aligned}$$

Then, for some \(t_{0}> 1\) large enough, \(\mathcal{J}(t_{0}\underline{\xi })<0\) and \(\|t_{0}\underline{\xi }\|_{\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) }>2\vartheta \), due to \(\frac{q^{+}}{1-\theta }<\mu \). Thus, we take \(e=t_{0}\underline{\xi }\), the proof is complete.

We currently prove Theorem 1.2.

Let \(\xi _{0} \in [ \underline{\xi },\overline{\xi } ] \cap \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \) be the previous solution of (1.1) obtained from Theorem 1.1, which satisfies

$$ \mathcal{I}(\xi _{0})=\inf_{\xi \in \Lambda }\mathcal{I}(\xi ) , $$

with \(\xi _{0}\in \Lambda :=[\underline{\xi },\overline{\xi }]\cap \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \). Using mountain pass theorem [20] and Lemmas 5.1 and 5.2, we determine the value

$$ d^{\ast }:=\inf_{\zeta \in \Xi }\max_{t\in {}[ 0,1]} \mathcal{J} \bigl( \zeta (t) \bigr), $$

with

$$ \Xi := \bigl\{ \zeta \in C \bigl([0,1],\mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \bigr);\zeta (0)=\underline{\xi }, \zeta (1)=e \bigr\} $$

being a critical value of \(\mathcal{J}\). Then, there exist \(\xi _{1}\in \mathcal{H}_{0}^{1,\mathcal{A}} ( \Lambda ) \) fulfilling \(\mathcal{J}^{\prime }(\xi _{1})=0\) and \(\mathcal{J}^{\prime }(\xi _{1})=d^{\ast }\). Taking into consideration that \(\mathcal{I}(\xi )=\mathcal{J}(\xi )\) for all \(\xi \in {}[ 0,\overline{\xi }]\cap \mathcal{H}_{0}^{1, \mathcal{A}} ( \Lambda ) \), it follows that \(\mathcal{J}(\xi _{0})\leq \mathcal{J}(\underline{\xi })\). Now, we prove that \(\xi _{1}\geq \underline{\xi }\) a.e. in Λ. Utilizing \((\underline{\xi }-\xi _{1})^{+}\) as a test function in \(\mathcal{J}^{\prime }(\xi _{1})=0\) and from the first inequality of (4.1), we have

$$\begin{aligned}& \mathcal{K} \bigl(J(\xi _{1}) \bigr) \int _{\Lambda } \bigl( \big\vert {}^{ \mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;;\psi }\underline{\xi } \big\vert ^{p(x)-2}+\kappa ( x ) \big\vert {}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \underline{\xi } \big\vert ^{q ( x ) -2} \bigr) .^{\mathbb{H}} \mathbb{D}_{0^{+}}^{ \gamma ,\delta ;\psi }(\underline{\xi }-\xi _{1})^{+}\,dx \\& \quad = \int _{\Lambda }f(x, \xi _{1}) (\underline{\xi }-\xi _{1})^{+}\,dx \\& \quad = \int _{\Lambda }\sigma (x)\underline{\xi }(x)^{\lambda (x)-1}+g(x,\underline{\xi })) (\underline{\xi }-\xi _{1})^{+}\,dx \\& \quad \geq \mathcal{K} \bigl(J(\underline{\xi }) \bigr)\times \int _{\Lambda } \bigl( \big\vert {}^{\mathbb{H}}\mathbb{D}_{0^{+}}^{\gamma ,\delta ;;\psi }\underline{\xi } \big\vert ^{p(x)-2}+\kappa ( x ) \big\vert {} ^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi } \underline{\xi } \big\vert ^{q ( x ) -2} \bigr) .{}^{\mathbb{H}} \mathbb{D}_{0^{+}}^{\gamma ,\delta ;\psi }( \underline{\xi }-\xi _{1})^{+}\,dx \end{aligned}$$

so that

$$ \bigl\langle \varphi (\underline{\xi })-\varphi (\xi _{1}), ( \underline{\xi }-\xi _{1})^{+} \bigr\rangle \leq 0. $$

So, because φ is strictly monotone, then \((\underline{\xi }-\xi _{1})^{+}=0\) a.e. in Λ. This leads to \(\xi _{1}\geq \underline{\xi }\) a.e. in Λ. Therefore, \(\xi _{0}\) and \(\xi _{1}\) are nonnegative solutions to the problem with

$$ \mathcal{J}(\xi _{0})\leq \mathcal{J}(\underline{\xi })< 0< \varsigma \leq d^{\ast }=\mathcal{J}(\xi _{1}). $$

We finished the proof of Theorem 1.2. □

6 Conclusion

In this work, we have analyzed the existence of solutions to a double-phase fractional equation of the Kirchhoff type in Musielak-Orlicz Sobolev space with variable exponents. Our approach is mainly based on the sub-supersolution method and the mountain pass theorem. In future work, we will follow the current study with general source terms.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Alrabaiah, H., Ahmad, I., Shah, K., et al.: Qualitative analysis of nonlinear coupled pantograph differential equations of fractional order with integral boundary conditions. Bound. Value Probl. 2020, 138 (2020). https://doi.org/10.1186/s13661-020-01432-2

    Article  MathSciNet  Google Scholar 

  2. Bahrouni, A., Radulescu, V.D., Winkert, P.: Double phase problems with variable growth and convection for the Baouendi–Grushin operator. Z. Angew. Math. Phys. 71(6), 183 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bouali, T., Guefaifia, R., Boulaaras, S.: Multiplicity of solutions for fractional \(p(z)\)-Kirchhoff-type equation. J. Inequal. Appl. 2024(1), 50 (2024)

    Article  MathSciNet  Google Scholar 

  4. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  5. Gasinski, L., Papageorgiou, N.S.: Constant sign and nodal solutions for superlinear double phase problems. Adv. Calc. Var. 14(4), 613–626 (2021)

    Article  MathSciNet  Google Scholar 

  6. Ghanmi, A., Zhang, Z.: Nehari manifold and multiplicity results for a class of fractional boundary value problems with p-Laplacian. Bull. Korean Math. Soc. 56(5), 1297–1314 (2019)

    MathSciNet  Google Scholar 

  7. Gul, H., Alrabaiah, H., Ali, S., Shah, K., Muhammad, S.: Computation of solution to fractional order partial reaction diffusion equations. J. Adv. Res. 25, 31–38 (2020)

    Article  Google Scholar 

  8. Halsey, T.C.: Electrorheological fluids. Science 258, 761–766 (1992)

    Article  Google Scholar 

  9. Jadhav, C., Dale, T., Chinchane, V.: On Dirichlet problem of time-fractional advection-diffusion equation. J. Fract. Calc. Nonlinear Syst. 4(2), 1–13 (2023). https://doi.org/10.48185/jfcns.v4i2.861. ISSN: 2709–9547

    Article  Google Scholar 

  10. Kamache, F., Guefaifia, R., Boulaaras, S.: Existence of three solutions for perturbed nonlinear fractional p-Laplacian boundary value systems with two control parameters. J. Pseudo-Differ. Oper. Appl. 11, 1781–1803 (2020). https://doi.org/10.1007/s11868-020-00354-y

    Article  MathSciNet  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  12. Kirchhoff, G.: Vorlesungen über Mechanik, 3rd edn. Teubner, Leipzig (1883)

    Google Scholar 

  13. Ladyzenskajaf, O.A., Ural’tzeva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    Google Scholar 

  14. Lei, C.-Y.: Existence and multiplicity of positive solutions forNeumann problems involving singularity and critical growth. J. Math. Anal. Appl. 459(2), 959–979 (2018)

    Article  MathSciNet  Google Scholar 

  15. Liu, W., Dai, G.: Existence and multiplicity results for double phase problem. J. Differ. Equ. 265(9), 4311–4334 (2018)

    Article  MathSciNet  Google Scholar 

  16. Machado, J.A.: Tenreiro: the bouncing ball and the Grünwald–Letnikov definition of fractional operator. Fract. Calc. Appl. Anal. 24(4), 1003–1014 (2021)

    Article  MathSciNet  Google Scholar 

  17. Meftah, B., Bouchareb, M., Boutelhig, N.: Fractional multiplicative corrected dual-Simpson typeinequalities. J. Fract. Calc. Nonlinear Syst. 4(2), 31–47 (2023)

    Article  Google Scholar 

  18. Nyamoradi, N., Tayyebi, E.: Existence of solutions for a class of fractional boundary value equations with impulsive effects via critical point theory. Mediterr. J. Math. 15(3), 1–25 (2018)

    Article  MathSciNet  Google Scholar 

  19. Papageorgiou, N.S., Repovs, D.D., Vetro, C.: Positive solutions for singular double phase problems. J. Math. Anal. Appl. 501(1), 123896 (2021)

    Article  MathSciNet  Google Scholar 

  20. Pucci, P., Radulescu, V.: The impact of the mountain pass theory in nonlinear analysis: mathematical survey. Boll. Unione Mat. Ital. (9) 3, 543–582 (2010)

    MathSciNet  Google Scholar 

  21. Radulescu, V.D.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121, 336–369 (2015)

    Article  MathSciNet  Google Scholar 

  22. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9(1), 710–728 (2020)

    Article  MathSciNet  Google Scholar 

  23. Roozbeh, E., Nemat, N.: Existence of solutions to a Kirchhoff ψ-Hilfer fractional p-Laplacian equations. Math. Methods Appl. Sci. 1(12) (2021)

  24. Sher, M., Shah, K., Rassias, J.: On qualitative theory of fractional order delay evolution equation via the prior estimate method. Math. Methods Appl. Sci. 43(10), 6464–6475 (2020)

    Article  MathSciNet  Google Scholar 

  25. Sousa, J.V.C.: Existence of nontrivial solutions to fractional Kirchhoff double phase problems. Comput. Appl. Math. 43(2), 93 (2024)

    Article  MathSciNet  Google Scholar 

  26. Sousa, J.V.C., De Oliveira, E.C.: On the ψ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    Article  MathSciNet  Google Scholar 

  27. Sousa, J.V.C., Karla, B.L., Leandro, S.T.: Existence of solutions for a singular double phase problem involving a ψ-Hilfer fractional operator via Nehari manifold. Qual. Theory Dyn. Syst. 22, 1–26 (2023)

    Article  MathSciNet  Google Scholar 

  28. Sousa, J.V.C., Oliveira, D.S., Leandro, S.T.: Solutions of the mean curvature equation with the Nehari manifold. Comput. Appl. Math. 43, 24 (2024)

    Article  MathSciNet  Google Scholar 

  29. Sousa, J.V.C., Sousa, C., Kucche, K.D., Nieto, J.J.: Existence and multiplicity of solutions for fractional \(\kappa ( x ) \)-Kirchhoff-type equation. Qual. Theory Dyn. Syst. 23, 27 (2024)

    Article  MathSciNet  Google Scholar 

  30. Sousa, J.V.C., Tavares, L.S., César, E., Torres, L.: A variational approach for a problem involving a ψ-Hilfer fractional operator. J. Appl. Anal. Comput. 11(3), 1610–1630 (2021)

    MathSciNet  Google Scholar 

  31. Sousa, J.V.C., Zuo, J., O’Regan, D.: The Nehari manifold for a ψ-Hilfer fractional p-Laplacian. Appl. Anal., 1–31 (2021)

  32. Winslow, W.: Induced fibration of suspensions. J. Appl. Phys. 20, 1137–1140 (1949)

    Article  Google Scholar 

  33. Woinowsky-Krieger, S.: The effect of an axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950)

    Article  MathSciNet  Google Scholar 

  34. Wulong, L., Dai, G., Papageorgiou, N.S., Winkert, P.: Existence of solutions for singular double phase problems via the Nehari manifold method (2021). arXiv:2101.00593

  35. Yaslan, I.: Beta-fractional calculus on time scales. J. Fract. Calc. Nonlinear Syst. 4(2), 48–60 (2023)

    Article  Google Scholar 

  36. You, Z., Feckan, M., Wang, J.R.: Relative controllability of fractional delay differential equations via delayed perturbation of Mittag-Leffler functions. J. Comput. Appl. Math. 378, 112939 (2020)

    Article  MathSciNet  Google Scholar 

  37. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, II/B: Nonlinear Monotone Operators. Springer, New York (1990)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks the referee for relevant remarks and comments, which improved the final version of the paper.

Funding

There is no applicable fund.

Author information

Authors and Affiliations

Authors

Contributions

The authors contribute equally in this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Salah Boulaaras.

Ethics declarations

Ethics approval and consent to participate

There is no applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouali, T., Guefaifia, R. & Boulaaras, S. Fractional double-phase nonlocal equation in Musielak-Orlicz Sobolev space. Bound Value Probl 2024, 68 (2024). https://doi.org/10.1186/s13661-024-01877-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01877-9

Mathematics Subject Classification

Keywords