Skip to main content

A modified fuzzy Adomian decomposition method for solving time-fuzzy fractional partial differential equations with initial and boundary conditions

Abstract

This research article introduces a novel approach based on the fuzzy Adomian decomposition method (FADM) to solve specific time fuzzy fractional partial differential equations with initial and boundary conditions (IBCs). The proposed approach addresses the challenge of incorporating both initial and boundary conditions into the FADM framework by employing a modified approach. This approach iteratively generates a new initial solution using the decomposition method. The method presented here offers a significant contribution to solving fuzzy fractional partial differential equations (FFPDEs) with fuzzy IBCs, a topic that has received limited attention in the literature. Furthermore, it satisfies a high convergence rate with minimal computational complexity, establishing a novel aspect of this research. By providing a series solution with a small number of recursive formulas, this method enhances accuracy and emerges as a preferred choice for tackling FFPDEs with mixed initial and boundary conditions. The effectiveness of the proposed technique is further supported by the inclusion of several illustrative examples.

1 Introduction

Fractional partial differential equations (FPDEs) have recently gained traction as a powerful modeling tool in diverse scientific fields, encompassing biology, physics, chemistry, and engineering [1, 710, 15, 35]. In FPDEs, the limitations of crisp quantities in representing inherent imprecision and uncertainty are addressed by employing fuzzy quantities, resulting in FFPDEs. The solution of FFPDEs has attracted significant research interest in the last few years due to the inherent challenges associated with obtaining analytical or numerical solutions. However, researchers have made significant progress in developing novel methodologies to address this challenge. Some notable methods include the ADM [22, 24, 30], the Laplace transform method [16, 26], the natural transform decomposition approach [37], the Laplace transform decomposition method (LTDM) [29, 34, 36], the Elzaki transform decomposition approach [5, 28], the finite difference technique [3840], the homotopy perturbation method [6], the differential transform method [13], the Bernstein spectral numerical method [25], the homotopy analysis method [23, 31, 33], the Chebyshev spectral method [17], the optimal He–Laplace algorithm [27] and the variational iteration approach [14, 18].

The phenomenon of diffusion is widespread in nature, characterized by the movement of molecules from areas of high concentration to those of low concentration. In contrast to diffusion, where molecules move randomly, reactions involve the bulk flow of molecules. Many physical processes in nature can be modeled mathematically using the diffusion equation. While several research works have been conducted on solving FFPDEs using numerical and analytical techniques, attempts to solve systems of FFPDEs with IBCs remain limited.

In this work, we will extend the modified technique of ADM introduced by the authors in [2, 19, 21] to solve fractional-order diffusion and advection–diffusion equations with IBCs in a fuzzy concept. The general description of the proposed approach is implemented to solve some examples of the suggested problems. The analytical solutions of FFPDEs with fuzzy IBCs are very difficult to investigate. In this work, the analytical solutions of FFPDEs are obtained in a very simple and straightforward procedure and provide the closed-form solutions. The less computational work and simplicity are the uniqueness of the present modified technique. The obtained results are displayed through graphs. The graphical representations have shown the analytical solutions of the problems at various fractional orders and uncertainty \(\varsigma \in [0,1]\). The fractional order solutions provide useful information about the dynamics of the suggested problems within a fuzzy environment.

2 Fundamental concepts of fractional and fuzzy calculus

This section provides essential definitions from fuzzy set theory and fractional calculus [3, 4, 32]. We denote the collection of fuzzy numbers by \(\mathcal{F}_{R}\), whereas normal, fuzzy convex, upper semicontinuous, and compactly supported fuzzy sets can be defined on the real line.

Definition 2.1

A fuzzy number \(\mathfrak{q}\) can be expressed in parametric form as \([\underline{\mathfrak{q}}(\varsigma ),\overline{\mathfrak{q}}( \varsigma )]\), for \(0 \leq \varsigma \leq 1\), if and only if

  1. (i)

    \(\underline{\mathfrak{q}}(\varsigma )\) is a bounded nondecreasing function and left continuous over (0,1],

  2. (ii)

    \(\overline{\mathfrak{q}}(\varsigma )\) is a bounded nonincreasing function and right continuous over (0,1],

  3. (iii)

    \(\underline{\mathfrak{q}}(\varsigma ) \leq \overline{\mathfrak{q}}( \varsigma )\).

Definition 2.2

The generalized Hukuhara difference (g\(\mathcal{H}\)-difference) of two fuzzy number \(\mathfrak{b},\mathfrak{e} \in \mathcal{F}_{R}\) is defined as the element \(\boldsymbol{c}\in \mathcal{F}_{R}\) such that

$$\begin{aligned} \mathfrak{b} \ominus _{g\mathcal{H}}\mathfrak{e}=\boldsymbol{c} \quad\Leftrightarrow\quad (i)~ \mathfrak{b}=\mathfrak{e}\oplus \boldsymbol{c}\quad \text{or} \quad(ii)~ \mathfrak{e}= \mathfrak{b} \oplus (-1)\boldsymbol{c}. \end{aligned}$$

Note: If case (i) exists, then there is no need to consider case (ii), but if both cases are applicable, it signifies that the two types of the difference are same and equal.

Definition 2.3

Let \(\mathcal{W}:\mathsf{J} \longrightarrow \mathcal {F}_{R}\), \(\mathsf{J}\in \mathbb{R}^{2}\). Then g\(\mathcal{H}\)-partial derivative of first order at the point \((\mu _{0}, {\tau}_{0}) \in \mathsf{J}\) with respect to variables μ, τ is denoted by \(\frac{\partial \mathcal{W}(\mu _{0},\tau_{0})}{\partial \mu}\), \(\frac{\partial \mathcal{W}(\mu _{0},\tau_{0})}{\partial \tau}\) and given by

$$\begin{aligned} &\frac{\partial \mathcal{W}(\mu _{0},\tau_{0})}{\partial \mu}= \lim_{h\to 0} \frac{\mathcal{W}(\mu _{0}+h,\tau_{0})\ominus _{g\mathcal{H}}\mathcal{W}(\mu _{0},\tau_{0})}{h},\\ &\frac{\partial \mathcal{W}(\mu _{0},\tau_{0})}{\partial \tau}= \lim_{d\to 0} \frac{\mathcal{W}(\mu _{0},\tau_{0}+d)\ominus _{g\mathcal{H}}\mathcal{W}(\mu _{0},\tau_{0})}{d}, \end{aligned}$$

provided that \(\frac{\partial \mathcal{W}(\mu _{0},\tau_{0})}{\partial \mu}\) and \(\frac{\partial \mathcal{W}(\mu _{0},\tau_{0})}{\partial \tau} \in \mathcal{F}_{R}\).

Definition 2.4

Let \(\mathcal{W}:\mathsf{J} \longrightarrow \mathcal{F}_{R}\) be g\(\mathcal{H}\)-partial differentiable with respect to μ at \((\mu _{0}, \tau_{0}) \in \mathsf{J}\). Then

  1. (1)

    \(\mathcal{W}\) is (i) g\(\mathcal{H}\)-partial differentiable with respect to μ at \((\mu _{0}, \tau_{0}) \in \mathsf{J}\). If

    $$ \biggl[ \frac{\partial \mathcal{W}(\mu _{0},\tau_{0},\varsigma )}{\partial \mu} \biggr] = \biggl[ \frac{\partial \underline{\mathcal{W}}(\mu _{0},\tau_{0},\varsigma )}{\partial \mu}, \frac{\partial \overline{\mathcal{W}}(\mu _{0},\tau_{0},\varsigma )}{\partial \mu} \biggr], \quad\forall \varsigma \in [0, 1]. $$
  2. (2)

    \(\mathcal{W}\) is (ii) g\(\mathcal{H}\)-partial differentiable with respect to μ at \((\mu _{0}, \tau_{0}) \in \mathsf{J}\). If

    $$ \biggl[ \frac{\partial \mathcal{W}(\mu _{0},\tau_{0},\varsigma )}{\partial \mu} \biggr]= \biggl[ \frac{\partial \overline{\mathcal{W}}(\mu _{0},\tau_{0},\varsigma )}{\partial \mu}, \frac{\partial \underline{\mathcal{W}}(\mu _{0},\tau_{0},\varsigma )}{\partial \mu} \biggr], \quad\forall \varsigma \in [0, 1]. $$

The g\(\mathcal{H}\)-partial derivative of \(\mathcal{W}\) with respect to τ at \((\mu _{0}, \tau_{0}) \in \mathsf{J}\) are defined similarly.

Remark: We assume the existence of (i) g\(\mathcal{H}\)-partial differentiability throughout this paper.

We represent the space of all continuous fuzzy-valued functions on \(\mathcal{I}\in \mathbb{R}\) by \(\mathfrak{C}[\mathcal{I} \mathcal{F}_{R}]\) and we recall the Lebesgue integrable space of fuzzy functions on the bounded interval \(\mathcal{I} \rightarrow \mathbb{R}\) by \(\mathfrak{L}[\mathcal{I},\mathcal{F}_{R}]\).

Definition 2.5

Let \(U(\mu ) \in \mathfrak{C}[\mathcal{I}, \mathcal{F}_{R}] \cap \mathfrak{L}[\mathcal{I},\mathcal{F}_{R}]\), the fuzzy Riemann–Liouville integral of fuzzy-valued function is defined as

$$ \mathfrak{\mathfrak{I}}^{\varphi}U(\mu ,{\varsigma})= \bigl[ \mathfrak{I}^{ \varphi} \underline{U}(\mu ,\varsigma ),\mathfrak{I}^{\varphi} \overline{U}(\mu ,\varsigma )\bigr], \quad\varsigma \in [0,1], $$

where

$$\begin{aligned} &\mathfrak{I}^{\varphi} \underline{U}(\mu ,\varsigma )= \frac{1}{\Gamma (\varphi )} \int _{0}^{\mu} (\mu -\mathfrak{t} )^{\varphi -1} \underline{U}(\mathfrak{t} ,\varsigma ) \,d\mathfrak{t} ,\quad \mu >0,\\ &\mathfrak{I}^{\varphi} \overline{U}(\mu ,\varsigma )= \frac{1}{\Gamma (\varphi )} \int _{0}^{\mu} (\mu -\mathfrak{t} )^{\varphi -1} \overline{U}(\mathfrak{t} ,\varsigma ) \,d\mathfrak{t} , \quad\mu >0. \end{aligned}$$

Definition 2.6

Let \(U(\mu ) \in \mathfrak{C}[\mathcal{I},\mathcal{F}_{R}] \cap \mathfrak{L}[\mathcal{I},\mathcal{F}_{R}]\). Then the fuzzy Caputo’s g\(\mathcal{H}\)-derivative of order \(\ell-1<\varphi \leq \ell\), \(\ell \in \mathbb{N}\) under (i) g\(\mathcal{H}\)-differentiability is given by

$$ {}^{c}_{g\mathcal{H}}\mathfrak{D}_{\mu}^{\varphi}U(\mu , \varsigma )=\bigl[ {}^{c}\mathfrak{D}_{\mu}^{\varphi} \underline{U}(\mu ,\varsigma ),{}^{c} \mathfrak{D}_{\mu}^{\varphi} \overline{U}(\mu ,\varsigma )\bigr], $$

where

$$\begin{aligned} &{}^{c}\mathfrak{D}_{\mu}^{\varphi}\underline{U}(\mu , \varsigma )]= \frac{1}{\Gamma (\ell -\varphi )} \int _{0}^{\mu}{(\mu -\mathfrak{t} )^{\ell - \varphi -1}}~ { \underline{U}^{(\ell )}(\mathfrak{t} ,\varsigma )}\,d\mathfrak{t} ,\\ &{}^{c}\mathfrak{D}_{\mu}^{\varphi}\overline{U}(\mu , \varsigma )= \frac{1}{\Gamma (\ell -\varphi )} \int _{0}^{\mu}{(\mu -\mathfrak{t})^{\ell - \varphi -1}}~ { \overline{U}^{(\ell )}(\mathfrak{t} ,\varsigma )}\,d\mathfrak{t} . \end{aligned}$$

3 Analysis of the fuzzy Adomian decomposition method (FADM)

Consider the equation

$$ F\bigl(U(\mu ,\tau ,{\varsigma})\bigr)=\mathfrak{g}(\mu ,\tau ,{ \varsigma}), $$
(1)

where F represents a general fuzzy fractional partial differential operator and \(\mathfrak{g}\) is known fuzzy-valued function. The linear terms in \(F(U(\mu ,\tau ,{\varsigma}))\) are decomposed as \(\hat{R}U(\mu ,\tau ,{\varsigma})+\hat{L}U(\mu ,\tau ,{\varsigma})\), where represent an invertible operator. This operator corresponds to taking the highest possible derivative and is the linear operator. Thus, Equation (1) can be represented as

$$ \hat{R}U(\mu ,\tau ,{\varsigma})+\hat{L}U(\mu ,\tau ,{ \varsigma})+ \hat{N}U(\mu ,\tau ,{\varsigma})=\mathfrak{g}(\mu ,\tau ,\varsigma ), $$
(2)

where represents a nonlinear operator in \(F(U(\mu ,\tau ,{\varsigma}))\).

Now, applying the operator \(\hat{R}^{-1}\) to both sides of Equation (2), we get

$$ U(\mu ,\tau ,{\varsigma})=\psi +\hat{R}^{-1} \mathfrak{g}(\mu ,\tau , \varsigma )-\hat{R}^{-1}\bigl[\hat{L}U(\mu , \tau ,{\varsigma})+\hat{N}U( \mu ,\tau ,{\varsigma})\bigr], $$
(3)

where ψ is the constant of integration and \(\hat{R}^{-1}\psi =0\).

The parametric form of Equation (3) is given by

$$ U(\mu ,\tau ,{\varsigma})=\bigl[\underline{U}(\mu ,\tau ,\varsigma ), \overline{U}(\mu ,\tau ,\varsigma )\bigr], $$

where

$$\begin{aligned} & \underline{U}(\mu ,\tau ,\varsigma )= \underline{\psi}+ \hat{R}^{-1} \underline{\mathfrak{g}}(\mu ,\tau ,\varsigma )- \hat{R}^{-1}\bigl[\hat{L} \underline{U}(\mu ,\tau ,{\varsigma})+\hat{N} \underline{U}(\mu ,\tau ,{ \varsigma})\bigr], \end{aligned}$$
(4)
$$\begin{aligned} &\overline{U}(\mu ,\tau ,\varsigma )= \overline{\psi}+ \hat{R}^{-1} \overline{\mathfrak{g}}(\mu ,\tau ,\varsigma )- \hat{R}^{-1}\bigl[\hat{L} \overline{U}(\mu ,\tau ,{\varsigma})+\hat{N} \overline{U}(\mu ,\tau ,{ \varsigma})\bigr]. \end{aligned}$$
(5)

FADM’s solution \(U(\mu ,\tau ,{\varsigma})\) is given by the following infinite series:

$$\begin{aligned} &\underline{U}(\mu ,\tau ,\varsigma )= \sum _{\jmath =o}^{\infty} \underline{U}_{\jmath}(\mu ,\tau , \varsigma ), \end{aligned}$$
(6)
$$\begin{aligned} &\overline{U}(\mu ,\tau ,\varsigma )= \sum _{\jmath =o}^{\infty} \overline{U}_{\jmath}(\mu ,\tau , \varsigma ), \end{aligned}$$
(7)

the nonlinear term is calculated by

$$ \hat{N}\underline{U}=\sum_{\jmath =0}^{\infty} \underline{M}_{\jmath}\quad \text{and} \quad \hat{N}\overline{U}=\sum _{\jmath =0}^{\infty}\overline{M}_{ \jmath}, $$

where

$$ \underline{M}_{\jmath}=\frac{1}{\jmath !} \frac{\partial ^{\jmath}}{\partial \mathfrak{q}^{\jmath}} \Biggl[ \bar{N}\Biggl(\sum_{i}^{\infty} \mathfrak{q}^{i}\underline{U}_{i}\Biggr) \Biggr]_{ \mathfrak{q}=0} $$

and

$$ \overline{M}_{\jmath}=\frac{1}{\jmath !} \frac{\partial ^{\jmath}}{\partial \mathfrak{p}^{\jmath}} \Biggl[ \bar{N}\Biggl(\sum_{i}^{\infty} \mathfrak{p}^{i}\overline{U}_{i}\Biggr) \Biggr]_{ \mathfrak{p}=0} $$

are defined as Adomian polynomials.

Moreover, a recurrence relation is constructed as follows:

$$ \begin{aligned} &\underline{U}_{0}(\mu ,\tau ,\varsigma )= \underline{\psi}+\hat{R}^{-1}\underline{\mathfrak{g}}(\mu ,\tau , \varsigma ), \\ &\underline{U}_{\jmath +1}(\mu ,\tau ,\varsigma )=\hat{R}^{-1} \Biggl( \bar{L}\underline{U}_{\jmath}+\sum_{\jmath =0}^{\infty} \underline{M}_{ \jmath} \Biggr) \end{aligned} $$
(8)

and

$$ \begin{aligned} &\overline{U}_{0}(\mu ,\tau , \varsigma )=\overline{\psi}+ \hat{R}^{-1}\overline{\mathfrak{g}}(\mu , \tau ,\varsigma ), \\ &\overline{U}_{\jmath +1}(\mu ,\tau ,\varsigma )=\hat{R}^{-1} \Biggl( \bar{L}\overline{U}_{\jmath}+\sum_{\jmath =0}^{\infty} \overline{M}_{ \jmath} \Biggr). \end{aligned} $$
(9)

4 Modification of FADM (MFADM)

To understand the main idea of the MFADM, we examine the following two types of one-dimensional time FFPDEs.

4.1 Time fuzzy fractional diffusion equations (TFFDEs)

$$ {}^{c}\mathfrak{D}_{\tau}^{\varphi}U(\mu , \tau ,{\varsigma})=g(\mu )U{ \mu \mu}(\mu ,\tau ,{\varsigma})+h(\mu ,\tau ,{ \varsigma}), 0< \varphi < 1, 0\leq \mu \leq a, \tau >0 $$
(10)

with the fuzzy IBCs

$$ \begin{aligned} &U(\mu ,0,{\varsigma})=w_{1}(\mu ,{ \varsigma}), \\ &U(0,\tau ,{\varsigma})=w_{2}(\tau ,{\varsigma}), \qquad U(a,\tau ,{ \varsigma})=w_{3}(\tau ,{\varsigma}), \end{aligned} $$
(11)

where \(g,h, w_{1}, w_{2}, w_{3}\) are known fuzzy-valued functions and \(0 \leq \varsigma \leq 1\).

We generate new successive initial solutions \(U^{*}_{n}\) at each iteration for Equation (10) using the following novel technique:

$$\begin{aligned} & {U_{n}^{*}}(\mu ,\tau ,\varsigma )={U}_{n}(\mu ,\tau ,\varsigma )+(1- \mu )\bigl[w_{2}-{U}_{n}(0, \tau ,\varsigma )\bigr]+\mu \bigl[w_{3}-{U}_{n}(a,\tau , \varsigma )\bigr], \\ &\quad n=0,1,2,\ldots \end{aligned}$$
(12)

We write Equation (12) in parameter form as follows:

$$ \begin{aligned} &\underline{U_{n}^{*}}( \mu ,\tau ,\varsigma )= \underline{U}_{n}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[\underline{w_{2}}- \underline{U}_{n}(0,\tau , \varsigma )\bigr]+\mu \bigl[\underline{w_{3}}- \underline{U}_{n}(a, \tau ,\varsigma )\bigr], \\ &\overline{U_{n}^{*}}(\mu ,\tau ,\varsigma )= \overline{U}_{n}(\mu , \tau ,\varsigma )+(1-\mu )\bigl[ \overline{w_{2}}-\overline{U}_{n}(0,\tau , \varsigma )\bigr]+ \mu \bigl[\overline{w_{3}}-\overline{U}_{n}(a,\tau , \varsigma )\bigr]. \end{aligned} $$
(13)

Applying FADM procedure, we have \(\hat{R}={}^{c}\mathfrak{D}_{\tau}\), hence \(\hat{R}^{-1}=\mathfrak{\mathfrak{I}}^{\varphi}\).

By operating with \(\mathfrak{\mathfrak{I}}^{\varphi}\) on both sides of Equation (10), we have

$$ \begin{aligned} &\underline{U}(\mu ,\tau ,\varsigma )= \underline{U}(\mu ,0, \varsigma )+\mathfrak{\mathfrak{I}}^{\varphi} \bigl[ \underline{g}(\mu ) \underline{U}_{\mu \mu}(\mu ,\tau ,{\varsigma})+ \underline{h}(\mu , \tau ,{\varsigma}) \bigr], \\ &\overline{U}(\mu ,\tau ,\varsigma )=\overline{U}(\mu ,0,\varsigma )+ \mathfrak{ \mathfrak{I}}^{\varphi} \bigl[\overline{g}(\mu )\overline{U}_{ \mu \mu}( \mu ,\tau ,{\varsigma})+\overline{h}(\mu ,\tau ,{\varsigma}) \bigr]. \end{aligned} $$
(14)

The initial approximation can be given as

$$ \begin{aligned} &\underline{U_{0}}(\mu ,\tau ,\varsigma )=\underline{U}( \mu ,0,\varsigma )+\mathfrak{\mathfrak{I}}^{\varphi} \bigl( \underline{h}(\mu ,\tau ,{\varsigma}) \bigr), \\ &\overline{U_{0}}(\mu ,\tau ,\varsigma )=\overline{U}(\mu ,0, \varsigma )+\mathfrak{\mathfrak{I}}^{\varphi} \bigl(\overline{h}(\mu , \tau ,{ \varsigma}) \bigr), \end{aligned} $$
(15)

so the iteration formula is

$$ \begin{aligned} &\underline{U}_{n+1}(\mu ,\tau ,\varsigma )= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\underline{g}(\mu ) \bigl( \underline{U}_{n}^{*}(\mu ,\tau ,{\varsigma}) \bigr)_{\mu \mu} \bigr],\quad n \geq 0, \\ &\overline{U}_{n+1}(\mu ,\tau ,\varsigma )=\mathfrak{ \mathfrak{I}}^{ \varphi} \bigl[\overline{g}(\mu ) \bigl(\overline{U}_{n}^{*}( \mu ,\tau ,{ \varsigma})\bigr)_{\mu \mu} \bigr],\quad n\geq 0. \end{aligned} $$
(16)

4.2 Time fuzzy fractional advection–diffusion equations (TFFADEs)

$$\begin{aligned} & {}^{c}\mathfrak{D}_{\tau}^{\varphi}U(\mu , \tau ,{\varsigma})+U_{\mu}( \mu ,\tau ,{\varsigma})=U_{\mu \mu}(\mu , \tau ,{\varsigma})+h(\mu , \tau ,{\varsigma}), \\ &\quad 0< \varphi < 1, 0\leq \mu \leq a, \tau >0 \end{aligned}$$
(17)

with the fuzzy IBCs

$$ \begin{aligned} &U(\mu ,0,{\varsigma})=w_{1}(\mu ,{ \varsigma}), \\ &U(0,\tau ,{\varsigma})=w_{2}(\tau ,{\varsigma}),\qquad U(a,\tau ,{ \varsigma})=w_{3}(\tau ,{\varsigma}), \end{aligned} $$
(18)

where \(h, w_{1}, w_{2}, w_{3}\) are known fuzzy-valued functions and \(0 \leq \varsigma \leq 1\).

We generate new successive initial solutions \(U^{*}_{n}\) at each iteration for Equation (17) using the following novel technique:

$$\begin{aligned} & {U_{n}^{*}}(\mu ,\tau ,\varsigma )={U}_{n}(\mu ,\tau ,\varsigma )+(1- \mu )\bigl[w_{2}-{U}_{n}(0, \tau ,\varsigma )\bigr]+\mu \bigl[w_{3}-{U}_{n}(a,\tau , \varsigma )\bigr], \\ &\quad n=0,1,2,\ldots \end{aligned}$$
(19)

Now, we write Equation (19) in parameter form as follows:

$$ \begin{aligned} &\underline{U_{n}^{*}}( \mu ,\tau ,\varsigma )= \underline{U}_{n}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[\underline{w_{2}}- \underline{U}_{n}(0,\tau , \varsigma )\bigr]+\mu \bigl[\underline{w_{3}}- \underline{U}_{n}(a,\tau, \varsigma )\bigr], \\ &\overline{U_{n}^{*}}(\mu ,\tau ,\varsigma )= \overline{U}_{n}(\mu , \tau ,\varsigma )+(1-\mu )\bigl[ \overline{w_{2}}-\overline{U}_{n}(0,\tau , \varsigma )\bigr]+ \mu \bigl[\overline{w_{3}}-\overline{U}_{n}(a,\tau , \varsigma )\bigr]. \end{aligned} $$
(20)

Applying FADM procedure, we have \(\hat{R}={}^{c}\mathfrak{D}_{\tau}\), hence \(\hat{R}^{-1}=\mathfrak{\mathfrak{I}}^{\varphi}\).

By operating with \(\mathfrak{\mathfrak{I}}^{\varphi}\) on both sides of Equation (17), we have

$$ \begin{aligned} &\underline{U}(\mu ,\tau ,\varsigma )= \underline{U}(\mu ,0, \varsigma )+\mathfrak{\mathfrak{I}}^{\varphi} \bigl[ \underline{U}_{\mu \mu}(\mu ,\tau ,{\varsigma})-\underline{U}_{\mu}( \mu ,\tau ,{ \varsigma})+\underline{h}(\mu ,\tau ,{\varsigma}) \bigr], \\ &\overline{U}(\mu ,\tau ,\varsigma )=\overline{U}(\mu ,0,\varsigma )+ \mathfrak{ \mathfrak{I}}^{\varphi} \bigl[\overline{U}_{\mu \mu}(\mu , \tau ,{ \varsigma})-\overline{U}_{\mu}(\mu ,\tau ,{\varsigma})+ \overline{h}(\mu , \tau ,{\varsigma}) \bigr]. \end{aligned} $$
(21)

The initial approximation can be written as

$$ \begin{aligned} &\underline{U_{0}}(\mu ,\tau ,\varsigma )=\underline{U}( \mu ,0,\varsigma )+\mathfrak{\mathfrak{I}}^{\varphi} \bigl( \underline{h}(\mu ,\tau ,{\varsigma}) \bigr), \\ &\overline{U_{0}}(\mu ,\tau ,\varsigma )=\overline{U}(\mu ,0, \varsigma )+\mathfrak{\mathfrak{I}}^{\varphi} \bigl(\overline{h}(\mu , \tau ,{ \varsigma}) \bigr), \end{aligned} $$
(22)

so the iteration formula is

$$ \begin{aligned} &\underline{U}_{n+1}(\mu ,\tau ,\varsigma )= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl( \underline{U}_{n}^{*}(\mu , \tau ,{\varsigma}) \bigr)_{\mu \mu}-\bigl(\underline{U}_{n}^{*}(\mu ,\tau ,{ \varsigma})\bigr)_{\mu} \bigr],\quad n\geq 0, \\ &\overline{U}_{n+1}(\mu ,\tau ,\varsigma )=\mathfrak{ \mathfrak{I}}^{ \varphi} \bigl[\bigl(\overline{U}_{n}^{*}( \mu ,\tau ,{\varsigma})\bigr)_{\mu \mu}-\bigl( \overline{U}_{n}^{*}( \mu ,\tau ,{\varsigma})\bigr)_{\mu} \bigr],\quad n\geq 0. \end{aligned} $$
(23)

Remark: The newly obtained initial solutions, denoted by \(U_{n}^{*}\), demonstrably satisfy the IBCs as presented below.

$$ \begin{aligned} &\text{If } \tau =0, \text{ then } \underline{U_{n}^{*}}( \mu ,0,\varsigma )= \underline{U_{n}}(\mu ,0,\varsigma ), \\ &\phantom{\text{If } \tau =0, \text{ then }}\overline{U_{n}^{*}}(\mu ,0,\varsigma )= \overline{U_{n}}(\mu ,0, \varsigma ), \\ &\text{if } \mu =0, \text{ then } \underline{U_{n}^{*}}(0, \tau , \varsigma )=\underline{w_{2}}(\tau ,\varsigma ), \\ &\phantom{\text{If } \tau =0, \text{ then }}\overline{U_{n}^{*}}(0,\tau ,\varsigma )= \overline{w_{2}}(\tau , \varsigma ), \\ &\text{if } \mu =a, \text{ then } \underline{U_{n}^{*}}(a, \tau , \varsigma )=\underline{w_{3}}(\tau ,\varsigma ), \\ &\phantom{\text{If } \tau =0, \text{ then }}\overline{U_{n}^{*}}(a,\tau ,\varsigma )= \overline{w_{3}}(\tau , \varsigma ). \end{aligned} $$
(24)

5 Applications and results

To demonstrate the effectiveness of the MFADM, this section solves several illustrative examples.

Example 5.1

Consider TFFDE of the following form:

$$\begin{aligned} & {}^{c}\mathfrak{D}_{\tau}^{\varphi}U(\mu , \tau ,{\varsigma})=U_{\mu \mu}( \mu ,\tau ,{\varsigma})+\frac{\Gamma (4+\varphi )}{6}\mu ^{4}(2-\mu ) \tau -4\mu ^{2}(6-5\mu )\tau ^{3+\mu}, \\ &\quad 0 \leq \mu \leq 2, \tau >0, \end{aligned}$$
(25)

with the fuzzy IBCs

$$ \begin{aligned} &U(\mu ,0,{\varsigma})=k=[\varsigma -1,1-\varsigma ],\quad 0 \leq \varsigma \leq 1, \\ &U(0,\tau ,{\varsigma})=U(2,\tau ,{\varsigma})=k=[\varsigma -1,1- \varsigma ]. \end{aligned} $$
(26)

Applying the MFADM, we have

$$ \begin{aligned} &\underline{U_{n}^{*}}( \mu ,\tau ,\varsigma )= \underline{U}_{n}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[\underline{k}- \underline{U}_{n}(0,\tau ,\varsigma )\bigr]+\mu \bigl[\underline{k}- \underline{U}_{n}(2,\tau ,\varsigma )\bigr], \\ &\overline{U_{n}^{*}}(\mu ,\tau ,\varsigma )= \overline{U}_{n}(\mu , \tau ,\varsigma )+(1-\mu )\bigl[\overline{k}- \overline{U}_{n}(0,\tau , \varsigma )\bigr]+\mu \bigl[\overline{k}- \overline{U}_{n}(2,\tau ,\varsigma )\bigr], \end{aligned} $$
(27)

where \(n=0,1,2,\ldots\) . Using FADM solution, we get

$$ \begin{aligned} &\underline{U}_{0}(\mu ,\tau ,\varsigma )=\underline{k}+ \mu ^{4}(2-\mu )^{3+\varphi}+ \frac{(20\mu ^{3}-24\mu ^{2})\Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )}, \\ &\overline{U}_{0}(\mu ,\tau ,\varsigma )=\overline{k}+\mu ^{4}(2-\mu )^{3+ \varphi}+ \frac{(20\mu ^{3}-24\mu ^{2})\Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )} \end{aligned} $$
(28)

and

$$ \begin{aligned} &\underline{U}_{n+1}(\mu ,\tau ,\varsigma )= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl( \underline{U}_{n}^{*}(\mu , \tau ,{\varsigma}) \bigr)_{\mu \mu} \bigr],\quad n\geq 0, \\ &\overline{U}_{n+1}(\mu ,\tau ,\varsigma )=\mathfrak{ \mathfrak{I}}^{ \varphi} \bigl[\bigl(\overline{U}_{n}^{*}( \mu ,\tau ,{\varsigma})\bigr)_{\mu \mu} \bigr],\quad n\geq 0. \end{aligned} $$
(29)

Now, we use the IBCs in Equation (27) for \(n=0\).

$$ \begin{aligned} &\underline{U_{0}^{*}}(\mu ,\tau ,\varsigma )= \underline{U}_{0}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \underline{k}- \underline{U}_{0}(0,\tau ,\varsigma )\bigr]+\mu \bigl[ \underline{k}- \underline{U}_{0}(2,\tau ,\varsigma )\bigr], \\ &\overline{U_{0}^{*}}(\mu ,\tau ,\varsigma )= \overline{U}_{0}(\mu , \tau ,\varsigma )+(1-\mu )\bigl[\overline{k}- \overline{U}_{0}(0,\tau , \varsigma )\bigr]+\mu \bigl[\overline{k}- \overline{U}_{0}(2,\tau ,\varsigma )\bigr], \end{aligned} $$
(30)

which implies

$$ \begin{aligned} &\underline{U_{0}^{*}}(\mu ,\tau ,\varsigma )\\ &\quad= \underline{k}+\mu ^{4}(2-\mu )\tau ^{3+\varphi}+ \frac{(20\mu ^{3}-24\mu ^{2})\Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )}- \frac{16\mu \Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )}, \\ &\overline{U_{0}^{*}}(\mu ,\tau ,\varsigma )\\ &\quad=\overline{k}+ \mu ^{4}(2- \mu )\tau^{3+\varphi}+ \frac{(20\mu ^{3}-24\mu ^{2})\Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )}- \frac{16\mu \Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )}. \end{aligned} $$
(31)

From Equation (29), we have

$$ \begin{aligned} &\underline{U}_{1}(\mu ,\tau ,\varsigma )= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\underline{U}_{0}^{*}( \mu , \tau ,{\varsigma})\bigr)_{\mu \mu} \bigr], \\ &\overline{U}_{1}(\mu ,\tau ,\varsigma )=\mathfrak{ \mathfrak{I}}^{ \varphi} \bigl[\bigl(\overline{U}_{0}^{*}( \mu ,\tau ,{\varsigma})\bigr)_{\mu \mu} \bigr]. \end{aligned} $$
(32)

We get

$$\begin{aligned} \begin{aligned} \underline{U}_{1}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \biggl[\bigl(24\mu ^{2}-20\mu ^{3}\bigr)\tau ^{3+ \varphi}+ \frac{(120\mu -48)\Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )} \biggr] \\ &= \frac{(24\mu ^{2}-20\mu ^{3})\Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )}+ \frac{(120\mu -48)\Gamma (4+\varphi )\tau ^{3+3\varphi}}{\Gamma (4+3\varphi )}, \end{aligned} \end{aligned}$$
(33)
$$\begin{aligned} \begin{aligned} \overline{U}_{1}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \biggl[\mu ^{4}(2-\mu )^{3+\varphi}+ \frac{(120\mu -48)\Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )} \biggr] \\ &= \frac{(24\mu ^{2}-20\mu ^{3})\Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )}+ \frac{(120\mu -48)\Gamma (4+\varphi )\tau ^{3+3\varphi}}{\Gamma (4+3\varphi )}. \end{aligned} \end{aligned}$$
(34)

Now, for \(n=1\), Equation (27) becomes

$$\begin{aligned} \begin{aligned} \underline{U_{1}^{*}}(\mu ,\tau , \varsigma )&= \underline{U}_{1}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \underline{k}- \underline{U}_{1}(0,\tau ,\varsigma )\bigr]+\mu \bigl[ \overline{k}-\overline{U}_{1}(2, \tau ,\varsigma )\bigr] \\ &=\underline{k}+ \frac{(24\mu ^{2}-20\mu ^{3}+64\mu )\Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )}- \frac{120\mu \Gamma (4+\varphi )\tau ^{3+3\varphi}}{\Gamma (4+3\varphi )}, \end{aligned} \end{aligned}$$
(35)
$$\begin{aligned} \begin{aligned} \overline{U_{1}^{*}}(\mu ,\tau , \varsigma )&= \overline{U}_{1}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \overline{k}- \overline{U}_{1}(0,\tau ,\varsigma )\bigr]+\mu \bigl[ \overline{k}-\overline{U}_{1}(2, \tau ,\varsigma )\bigr] \\ &=\overline{k}+ \frac{(24\mu ^{2}-20\mu ^{3}+64\mu )\Gamma (4+\varphi )\tau ^{3+2\varphi}}{\Gamma (4+2\varphi )}- \frac{120\mu \Gamma (4+\varphi )\tau ^{3+3\varphi}}{\Gamma (4+3\varphi )}. \end{aligned} \end{aligned}$$
(36)

From Equation (29), we obtain

$$\begin{aligned} \begin{aligned} \underline{U}_{2}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\underline{U}_{1}^{*}( \mu , \tau ,{\varsigma})\bigr)_{\mu \mu} \bigr] \\ &= \frac{(48-120\mu )\Gamma (4+\varphi )\tau ^{3+3\varphi}}{\Gamma (4+3\varphi )}, \end{aligned} \end{aligned}$$
(37)
$$\begin{aligned} \begin{aligned} \overline{U}_{2}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\overline{U}_{1}^{*}( \mu , \tau ,{\varsigma})\bigr)_{\mu \mu} \bigr] \\ &= \frac{(48-120\mu )\Gamma (4+\varphi )\tau ^{3+3\varphi}}{\Gamma (4+3\varphi )}. \end{aligned} \end{aligned}$$
(38)

For \(n=2\), Equation (27) becomes

$$\begin{aligned} \begin{aligned} \underline{U_{2}^{*}}(\mu ,\tau , \varsigma )&= \underline{U}_{2}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \underline{k}- \underline{U}_{2}(0,\tau ,\varsigma )\bigr]+\mu \bigl[ \underline{k}- \underline{U}_{2}(2,\tau ,\varsigma )\bigr] \\ &=\underline{k}+ \frac{120\mu \Gamma (4+\varphi )\tau ^{3+3\varphi}}{\Gamma (4+3\varphi )}, \end{aligned} \end{aligned}$$
(39)
$$\begin{aligned} \begin{aligned} \overline{U_{2}^{*}}(\mu ,\tau , \varsigma )&= \overline{U}_{2}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \overline{k}- \overline{U}_{2}(0,\tau ,\varsigma )\bigr]+\mu \bigl[ \overline{k}-\overline{U}_{2}(2, \tau ,\varsigma )\bigr] \\ &=\overline{k}+ \frac{120\mu \Gamma (4+\varphi )\tau ^{3+3\varphi}}{\Gamma (4+3\varphi )}. \end{aligned} \end{aligned}$$
(40)

From Equation (29), we obtain

$$\begin{aligned} \begin{aligned} \underline{U}_{3}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\underline{U}_{2}^{*}( \mu , \tau ,{\varsigma})\bigr)_{\mu \mu} \bigr] \\ &=0, \end{aligned} \end{aligned}$$
(41)
$$\begin{aligned} \begin{aligned} \overline{U}_{3}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\overline{U}_{2}^{*}( \mu , \tau ,{\varsigma})\bigr)_{\mu \mu} \bigr] \\ &=0. \\ &\vdots \end{aligned} \end{aligned}$$
(42)

Thus, the MFADM solution is

$$\begin{aligned} \begin{aligned} \underline{U}(\mu ,\tau ,\varsigma )&= \underline{U}_{0}( \mu ,\tau ,\varsigma )+\underline{U}_{1}( \mu ,\tau ,\varsigma )+ \underline{U}_{2}(\mu ,\tau ,\varsigma )+\cdots \\ &=\underline{k}+\mu ^{4}(2-\mu )\tau ^{3+\varphi}, \end{aligned} \end{aligned}$$
(43)
$$\begin{aligned} \begin{aligned} \overline{U}(\mu ,\tau ,\varsigma )&= \overline{U}_{0}( \mu ,\tau ,\varsigma )+\overline{U}_{1}( \mu ,\tau ,\varsigma )+ \overline{U}_{2}(\mu ,\tau ,\varsigma )+\cdots \\ &=\overline{k}+\mu ^{4}(2-\mu )\tau ^{3+\varphi}]. \end{aligned} \end{aligned}$$
(44)

In Fig. 1, we plot the analytical fuzzy solutions for Example 5.1 corresponding to different fractional order and uncertainty ς.

Figure 1
figure 1

2D graph of the analytical lower and upper solutions of Ex. 5.1 at \(\mu =0.2\) and \(\tau =3\)

Further, we present in Fig. 2(a,b) surface plots of the analytical fuzzy solutions for Example 5.1 corresponding to given fractional order and at different values of μ and τ as well as of uncertainty ς.

Figure 2
figure 2

3D graph of the analytical lower and upper solutions of Ex. 5.1 at \(\mu =0.5\) (a) and at \(\tau =0.8\) (b)

Example 5.2

Consider the following TFFDE:

$$ {}^{c}\mathfrak{D}_{\tau}^{\varphi}U(\mu , \tau ,{\varsigma})= \frac{1}{2}\mu ^{2}U_{\mu \mu}(\mu ,\tau ,{\varsigma}), \quad 0\leq \mu \leq 1, \tau >0 $$
(45)

having the fuzzy IBCs as follows:

$$ \begin{aligned} &U(\mu ,0,{\varsigma})=k\mu ^{2}, \\ &U(0,\tau ,{\varsigma})=0,\qquad U(1,\tau ,{\varsigma})=kE_{\varphi}( \tau ), \end{aligned} $$
(46)

where \(E_{\varphi}(\tau )=\sum_{\jmath =0}^{\infty} \frac{\tau ^{\varphi}}{\Gamma (\varphi \jmath +1)}\).

Applying the MFADM, we have

$$\begin{aligned} \begin{aligned} &\underline{U_{n}^{*}}( \mu ,\tau ,\varsigma )= \underline{U}_{n}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[\underline{k}\mu ^{2}- \underline{U}_{n}(0,\tau , \varsigma )\bigr]+\mu \bigl[\underline{k}E_{\varphi}( \tau )- \underline{U}_{n}(1,\tau ,\varsigma )\bigr], \\ &\overline{U_{n}^{*}}(\mu ,\tau ,\varsigma )= \overline{U}_{n}(\mu , \tau ,\varsigma )+(1-\mu )\bigl[\overline{k}\mu ^{2}-\overline{U}_{n}(0, \tau ,\varsigma )\bigr]+\mu \bigl[ \overline{k}E_{\varphi}(\tau )-\overline{U}_{n}(1, \tau ,\varsigma )\bigr], \end{aligned} \end{aligned}$$
(47)

where \(n=0,1,2,\ldots\) . Using FADM solution, we have

$$ \begin{aligned} &\underline{U}_{0}(\mu ,\tau ,\varsigma )=\underline{k} \mu ^{2}, \\ &\overline{U}_{0}(\mu ,\tau ,\varsigma )=\overline{k}\mu ^{2} \end{aligned} $$
(48)

and

$$ \begin{aligned} &\underline{U}_{n+1}(\mu ,\tau ,\varsigma )=\frac{1}{2} \mu ^{2}\mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\underline{U}_{n}^{*}( \mu ,\tau ,{\varsigma}) \bigr)_{\mu \mu} \bigr],\quad n\geq 0, \\ &\overline{U}_{n+1}(\mu ,\tau ,\varsigma )=\frac{1}{2}\mu ^{2} \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl( \overline{U}_{n}^{*}(\mu , \tau ,{\varsigma}) \bigr)_{\mu \mu} \bigr],\quad n\geq 0. \end{aligned} $$
(49)

Now, we use the IBCs in Equation (47) for \(n=0\).

$$\begin{aligned} \begin{aligned} \underline{U_{0}^{*}}(\mu ,\tau , \varsigma )&= \underline{U}_{0}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \underline{k}\mu ^{2}- \underline{U}_{0}(0,\tau ,\varsigma ) \bigr]+\mu \bigl[\underline{k}E_{\varphi}( \tau )-\underline{U}_{0}(2, \tau ,\varsigma )\bigr] \\ &=\underline{k}\mu ^{2}+\underline{k}\mu \bigl[E_{\varphi}(\tau )-1\bigr], \end{aligned} \end{aligned}$$
(50)
$$\begin{aligned} \begin{aligned} \overline{U_{0}^{*}}(\mu ,\tau , \varsigma )&= \overline{U}_{0}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \overline{k}\mu ^{2}- \overline{U}_{0}(0,\tau ,\varsigma ) \bigr]+\mu \bigl[\overline{k}E_{\varphi}( \tau )-\overline{U}_{0}(1, \tau ,\varsigma )\bigr] \\ &=\overline{k}\mu ^{2}+\overline{k}\mu \bigl[E_{\varphi}(\tau )-1 \bigr]. \end{aligned} \end{aligned}$$
(51)

From Equation (49), we have

$$\begin{aligned} &\underline{U}_{1}(\mu ,\tau ,\varsigma )= \frac{1}{2}\mu ^{2} \mathfrak{\mathfrak{I}}^{\varphi} \bigl[ \bigl(\underline{U}_{0}^{*}(\mu , \tau ,{\varsigma}) \bigr)_{\mu \mu} \bigr]= \frac{\underline{k}\mu ^{2}\tau ^{\varphi}}{\Gamma (\varphi +1)}, \end{aligned}$$
(52)
$$\begin{aligned} &\overline{U}_{1}(\mu ,\tau ,\varsigma )= \frac{1}{2}\mu ^{2} \mathfrak{\mathfrak{I}}^{\varphi} \bigl[ \bigl(\overline{U}_{0}^{*}(\mu , \tau ,{\varsigma}) \bigr)_{\mu \mu} \bigr]= \frac{\overline{k}\mu ^{2}\tau ^{\varphi}}{\Gamma (\varphi +1)}. \end{aligned}$$
(53)

Now, for \(n=1\), Equation (47) becomes

$$\begin{aligned} \begin{aligned} \underline{U_{1}^{*}}(\mu ,\tau , \varsigma )&= \underline{U}_{1}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \underline{k}\mu ^{2}- \underline{U}_{1}(0,\tau ,\varsigma ) \bigr]+\mu \bigl[\overline{k}E_{\varphi}( \tau )-\overline{U}_{1}(1, \tau ,\varsigma )\bigr] \\ &=\frac{\underline{k}\mu ^{2}\tau ^{\varphi}}{\Gamma (\varphi +1)}+ \underline{k}\mu \biggl[E_{\varphi}(\tau )- \frac{\tau ^{\varphi}}{\Gamma (\varphi +1)}\biggr], \end{aligned} \end{aligned}$$
(54)
$$\begin{aligned} \begin{aligned} \overline{U_{1}^{*}}(\mu ,\tau , \varsigma )&= \overline{U}_{1}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \overline{k}\mu ^{2}- \overline{U}_{1}(0,\tau ,\varsigma ) \bigr]+\mu \bigl[\overline{k}E_{\varphi}( \tau )-\overline{U}_{1}(1, \tau ,\varsigma )\bigr] \\ &=\frac{\overline{k}\mu ^{2}\tau ^{\varphi}}{\Gamma (\varphi +1)}+ \overline{k}\mu \biggl[E_{\varphi}(\tau )- \frac{\tau ^{\varphi}}{\Gamma (\varphi +1)}\biggr]. \end{aligned} \end{aligned}$$
(55)

From Equation (49), we obtain

$$\begin{aligned} & \underline{U}_{2}(\mu ,\tau ,\varsigma )= \frac{1}{2} \mu ^{2}\mathfrak{\mathfrak{I}}^{\varphi} \bigl[ \bigl(\underline{U}_{1}^{*}( \mu ,\tau ,{\varsigma}) \bigr)_{\mu \mu} \bigr] = \frac{\underline{k}\mu ^{2}\tau ^{2\varphi}}{\Gamma (2\varphi +1)}. \end{aligned}$$
(56)
$$\begin{aligned} & \overline{U}_{2}(\mu ,\tau ,\varsigma )= \frac{1}{2}\mu ^{2} \mathfrak{\mathfrak{I}}^{\varphi} \bigl[ \bigl(\overline{U}_{1}^{*}(\mu , \tau ,{\varsigma}) \bigr)_{\mu \mu} \bigr]= \frac{\overline{k}\mu ^{2}\tau ^{2\varphi}}{\Gamma (2\varphi +1)}. \end{aligned}$$
(57)

For \(n=2\), Equation (47) becomes

$$\begin{aligned} \begin{aligned} \underline{U_{2}^{*}}(\mu ,\tau , \varsigma )&= \underline{U}_{2}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \underline{k}\mu ^{2}- \underline{U}_{2}(0,\tau ,\varsigma ) \bigr]+\mu \bigl[\underline{k}E_{\varphi}( \tau )-\underline{U}_{2}(1, \tau ,\varsigma )\bigr] \\ &=\frac{\underline{k}\mu ^{2}\tau ^{\varphi}}{\Gamma (\varphi +1)}+ \underline{k}\mu \biggl[E_{\varphi}(\tau )- \frac{\tau ^{2\varphi}}{\Gamma (2\varphi +1)}\biggr], \end{aligned} \end{aligned}$$
(58)
$$\begin{aligned} \begin{aligned} \overline{U_{2}^{*}}(\mu ,\tau , \varsigma )&= \overline{\nu}_{2}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \overline{k}\mu ^{2}- \overline{U}_{2}(0,\tau ,\varsigma ) \bigr]+\mu \bigl[\overline{k}E_{\varphi}( \tau )-\overline{U}_{2}(1, \tau ,\varsigma )\bigr] \\ &=\frac{\overline{k}\mu ^{2}\tau ^{\varphi}}{\Gamma (\varphi +1)}+ \overline{k}\mu \biggl[E_{\varphi}(\tau )- \frac{\tau ^{2\varphi}}{\Gamma (2\varphi +1)}\biggr]. \end{aligned} \end{aligned}$$
(59)

From Equation (49), we obtain

$$\begin{aligned} \begin{aligned} \underline{U}_{3}(\mu ,\tau ,\varsigma )&= \frac{1}{2} \mu ^{2}\mathfrak{\mathfrak{I}}^{\varphi} \bigl[ \bigl(\underline{U}_{1}^{*}( \mu ,\tau ,{\varsigma}) \bigr)_{\mu \mu} \bigr] = \frac{\underline{k}\mu ^{2}\tau ^{3\varphi}}{\Gamma (3\varphi +1)},\end{aligned} \end{aligned}$$
(60)
$$\begin{aligned} \begin{aligned} \overline{U}_{3}(\mu ,\tau ,\varsigma )&= \frac{1}{2}\mu ^{2} \mathfrak{\mathfrak{I}}^{\varphi} \bigl[ \bigl(\overline{U}_{1}^{*}(\mu , \tau ,{\varsigma}) \bigr)_{\mu \mu} \bigr]= \frac{\overline{k}\mu ^{2}\tau ^{3\varphi}}{\Gamma (3\varphi +1)}. \\ &\vdots \end{aligned} \end{aligned}$$
(61)

The MFADM solution is

$$\begin{aligned} \begin{aligned} \underline{U}(\mu ,\tau ,\varsigma )&= \underline{U}_{0}( \mu ,\tau ,\varsigma )+\underline{U}_{1}( \mu ,\tau ,\varsigma )+ \underline{U}_{2}(\mu ,\tau ,\varsigma )+\cdots \\ &=\underline{k}\mu ^{2} \biggl[1+ \frac{\tau ^{\varphi}}{\Gamma (\varphi +1)}+ \frac{\tau ^{2\varphi}}{\Gamma (2\varphi +1)}+ \frac{\tau ^{3\varphi}}{\Gamma (3\varphi +1)}+\cdots \biggr]= \underline{k}\mu ^{2}E_{\varphi}(\tau ), \end{aligned} \end{aligned}$$
(62)
$$\begin{aligned} \begin{aligned} \overline{U}(\mu ,\tau ,\varsigma )&= \overline{U}_{0}( \mu ,\tau ,\varsigma )+\overline{U}_{1}( \mu ,\tau ,\varsigma )+ \overline{U}_{2}(\mu ,\tau ,\varsigma )+\cdots \\ &=\overline{k}\mu ^{2} \biggl[1+ \frac{\tau ^{\varphi}}{\Gamma (\varphi +1)}+ \frac{\tau ^{2\varphi}}{\Gamma (2\varphi +1)}+ \frac{\tau ^{3\varphi}}{\Gamma (3\varphi +1)}+\cdots \biggr]= \overline{k}\mu ^{2}E_{\varphi}(\tau ). \end{aligned} \end{aligned}$$
(63)

In Fig. 3, we plot the analytical fuzzy solutions for Example 5.2 corresponding to different fractional order and uncertainty ς.

Figure 3
figure 3

2D graph of the analytical lower and upper solutions of Ex. 5.2 at \(\mu =0.2\) and \(\tau =1\)

Further, we present in Fig. 4(a,b) surface plots of the analytical fuzzy solutions for Example 5.2 corresponding to given fractional order and at different values of μ and τ as well as of uncertainty ς.

Figure 4
figure 4

3D graph of the analytical lower and upper solutions of Ex. 5.2 at \(\mu =0.6\) (a) and \(\tau =0.2\) (b)

Example 5.3

Consider the following TFFAD equation:

$$ {}^{c}\mathfrak{D}_{\tau}^{\varphi}U(\mu , \tau ,{\varsigma})+U_{\mu}( \mu ,\tau ,{\varsigma})=U_{\mu \mu}(\mu , \tau ,{\varsigma})+ \frac{\Gamma (\beta +1)}{\Gamma (\beta +1-\varphi )}e^{\mu}\tau ^{ \beta -\varphi} $$
(64)

with the fuzzy IBCs

$$ \begin{aligned} &U(\mu ,0,{\varsigma})=k, \\ &U(0,\tau ,{\varsigma})=\tau ^{\beta},\qquad U(1,\tau ,{\varsigma})=e \tau ^{\beta}, \end{aligned} $$
(65)

where \(0\leq \mu \leq 1, \tau >0\).

Applying the MFADM, we have

$$ \begin{aligned} &\underline{U_{n}^{*}}( \mu ,\tau ,\varsigma )= \underline{U}_{n}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[\tau ^{\beta}- \underline{U}_{n}(0,\tau ,\varsigma ) \bigr]+\mu \bigl[et^{\beta}-\underline{U}_{n}(1, \tau ,\varsigma )\bigr], \\ &\overline{U_{n}^{*}}(\mu ,\tau ,\varsigma )= \overline{U}_{n}(\mu , \tau ,\varsigma )+(1-\mu )\bigl[\tau ^{\beta}-\overline{U}_{n}(0,\tau , \varsigma )\bigr]+\mu \bigl[e\tau ^{\beta}-\overline{U}_{n}(1,\tau ,\varsigma )\bigr], \end{aligned} $$
(66)

where \(n=0,1,2,\ldots\) .

Using FADM solution, we get

$$ \begin{aligned} &\underline{U}_{0}(\mu ,\tau ,\varsigma )=\underline{k}+e^{ \mu}\tau ^{\beta}, \\ &\overline{U}_{0}(\mu ,\tau ,\varsigma )=\overline{k}+e^{\mu} \tau ^{ \beta} \end{aligned} $$
(67)

and

$$ \begin{aligned} &\underline{U}_{n+1}(\mu ,\tau ,\varsigma )= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl( \underline{U}_{n}^{*}(\mu , \tau ,{\varsigma}) \bigr)_{\mu \mu}-\bigl(\underline{U}_{n}^{*}(\mu ,\tau ,{ \varsigma})\bigr)_{\mu} \bigr],\quad n\geq 0, \\ &\overline{U}_{n+1}(\mu ,\tau ,\varsigma )=\mathfrak{ \mathfrak{I}}^{ \varphi} \bigl[\bigl(\overline{U}_{n}^{*}( \mu ,\tau ,{\varsigma})\bigr)_{\mu \mu}-\bigl( \overline{U}_{n}^{*}( \mu ,\tau ,{\varsigma})\bigr)_{\mu} \bigr],\quad n\geq 0. \end{aligned} $$
(68)

Now, we put the IBCs in Equation (66) for \(n=0\).

$$\begin{aligned} \begin{aligned} \underline{U_{0}^{*}}(\mu ,\tau , \varsigma )&= \underline{U}_{0}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \tau ^{\beta}- \underline{U}_{0}(0,\tau ,\varsigma )\bigr]+\mu \bigl[e\tau ^{\beta}- \underline{U}_{0}(1,\tau ,\varsigma ) \bigr] \\ &=2\underline{k}+e^{\mu}\tau ^{\beta}, \end{aligned} \end{aligned}$$
(69)
$$\begin{aligned} \begin{aligned} \overline{U_{0}^{*}}(\mu ,\tau , \varsigma )&= \overline{U}_{0}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[ \tau ^{\beta}- \overline{U}_{0}(0,\tau ,\varsigma )\bigr]+\mu \bigl[e\tau ^{\beta}- \overline{U}_{0}(1,\tau ,\varsigma )\bigr] \\ &=2\overline{k}+e^{\mu}\tau ^{\beta}. \end{aligned} \end{aligned}$$
(70)

From Equation (68), we have

$$\begin{aligned} \begin{aligned} \underline{U}_{1}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\underline{U}_{0}^{*}( \mu , \tau ,{\varsigma})\bigr)_{\mu \mu}-\bigl(\underline{U}_{0}^{*}( \mu ,\tau ,{ \varsigma})\bigr)_{\mu} \bigr] \\ &=\mathfrak{\mathfrak{I}}^{\varphi}\bigl[e^{\mu}\tau ^{\beta}-e^{\mu}\tau ^{\beta}\bigr] \\ &=0, \end{aligned} \end{aligned}$$
(71)
$$\begin{aligned} \begin{aligned} \overline{U}_{1}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\overline{U}_{0}^{*}( \mu , \tau ,{\varsigma})\bigr)_{\mu \mu}-\bigl(\overline{U}_{0}^{*}( \mu ,\tau ,{ \varsigma})\bigr)_{\mu} \bigr] \\ &=\mathfrak{\mathfrak{I}}^{\varphi}\bigl[e^{\mu}\tau ^{\beta}-e^{\mu}\tau ^{\beta}\bigr] \\ &=0. \\ &\vdots \end{aligned} \end{aligned}$$
(72)

The MFADM solution is

$$\begin{aligned} \begin{aligned} \underline{U}(\mu ,\tau ,\varsigma )&= \underline{U}_{0}( \mu ,\tau ,\varsigma )+\underline{U}_{1}( \mu ,\tau ,\varsigma )+ \underline{U}_{2}(\mu ,\tau ,\varsigma )+\cdots \\ &=\underline{k}+e^{\mu}\tau ^{\beta}, \end{aligned} \end{aligned}$$
(73)
$$\begin{aligned} \begin{aligned} \overline{U}(\mu ,\tau ,\varsigma )&= \overline{U}_{0}( \mu ,\tau ,\varsigma )+\overline{U}_{1}( \mu ,\tau ,\varsigma )+ \overline{U}_{2}(\mu ,\tau ,\varsigma )+\cdots \\ &=\overline{k}+e^{\mu}\tau ^{\beta}. \end{aligned} \end{aligned}$$
(74)

In Fig. 5, we plot the analytical fuzzy solutions for Example 5.3 to different values of τ and uncertainty ς with \(\beta=5\).

Figure 5
figure 5

2D graph of the analytical lower and upper solutions of Ex. 5.3 at \(\mu =0.5\)

Further, we present in Fig. 6(a,b) surface plots of the analytical fuzzy solutions for Example 5.3 corresponding to different values of μ and τ as well as of uncertainty ς with \(\beta=5\).

Figure 6
figure 6

3D graph of the analytical lower and upper solutions of Ex. 5.3 at \(\mu =0.2\) (a) and \(\tau =0.5\) (b)

Example 5.4

Consider the following TFFADE:

$$ {}^{c}\mathfrak{D}_{\tau}^{\varphi}U(\mu , \tau ,{\varsigma})+U_{\mu}( \mu ,\tau ,{\varsigma})=U_{\mu \mu}(\mu , \tau ,{\varsigma})+h(\mu , \tau ,{\varsigma}),\quad 0\leq \mu \leq 1, \tau >0 $$
(75)

having the fuzzy IBCs as follows:

$$ \begin{aligned} &U(\mu ,0,{\varsigma})=k\mu (1-\mu ), \\ &U(0,\tau ,{\varsigma})=U(1,\tau ,{\varsigma})=0, \end{aligned} $$
(76)

where \(h(\mu ,\tau ,{\varsigma})=k \big[ \frac{2\mu (1-\mu )}{\Gamma (3-\varphi )}\tau ^{2-\varphi}+(3-2\mu )( \tau ^{2}+1) \big]\).

Applying the MFADM, we have

$$ \begin{aligned} &\underline{U_{n}^{*}}( \mu ,\tau ,\varsigma )= \underline{U}_{n}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[0-\underline{U}_{n}(0, \tau ,\varsigma )\bigr]+\mu \bigl[0- \underline{U}_{n}(1,\tau ,\varsigma )\bigr], \\ &\overline{U_{n}^{*}}(\mu ,\tau ,\varsigma )= \overline{U}_{n}(\mu , \tau ,\varsigma )+(1-\mu )\bigl[0- \overline{U}_{n}(0,\tau ,\varsigma )\bigr]+ \mu \bigl[0- \overline{U}_{n}(1,\tau ,\varsigma )\bigr], \end{aligned} $$
(77)

where \(n=0,1,2,\ldots\) .

Using the FADM procedure, we have

$$ \begin{aligned} &\underline{U}_{0}(\mu ,\tau ,\varsigma )=\underline{k} \mu (1-\mu ) \bigl(\tau ^{2}+1\bigr)+ \underline{k}(3-2\mu ) \biggl[ \frac{2\tau ^{\varphi +2}}{\Gamma (\varphi +3)}+ \frac{\tau ^{\varphi}}{\Gamma (\varphi +1)} \biggr], \\ &\overline{U}_{0}(\mu ,\tau ,\varsigma )=\overline{k}\mu (1-\mu ) \bigl( \tau ^{2}+1\bigr)+\overline{k}(3-2\mu ) \biggl[ \frac{2\tau ^{\varphi +2}}{\Gamma (\varphi +3)}+ \frac{\tau ^{\varphi}}{\Gamma (\varphi +1)} \biggr] \end{aligned} $$
(78)

and

$$ \begin{aligned} &\underline{U}_{n+1}(\mu ,\tau ,\varsigma )= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl( \underline{U}_{n}^{*}(\mu , \tau ,{\varsigma}) \bigr)_{\mu \mu}-\bigl(\underline{U}_{n}^{*}(\mu ,\tau ,{ \varsigma})\bigr)_{\mu} \bigr],\quad n\geq 0, \\ &\overline{U}_{n+1}(\mu ,\tau ,\varsigma )=\mathfrak{ \mathfrak{I}}^{ \varphi} \bigl[\bigl(\overline{U}_{n}^{*}( \mu ,\tau ,{\varsigma})\bigr)_{\mu \mu}-\bigl( \overline{U}_{n}^{*}( \mu ,\tau ,{\varsigma})\bigr)_{\mu} \bigr],\quad n\geq 0. \end{aligned} $$
(79)

Now, we put the IBCs in Equation (77) for \(n=0\).

$$\begin{aligned} \begin{aligned} \underline{U_{0}^{*}}(\mu ,\tau , \varsigma )&= \underline{U}_{0}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[0- \underline{U}_{0}(0, \tau ,\varsigma )\bigr]+\mu \bigl[0- \underline{U}_{0}(1,\tau ,\varsigma )\bigr] \\ &=\underline{k}\mu (1-\mu ) \bigl(\tau ^{2}+1\bigr), \end{aligned} \end{aligned}$$
(80)
$$\begin{aligned} \begin{aligned} \overline{U_{0}^{*}}(\mu ,\tau , \varsigma )&= \overline{U}_{0}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[0- \overline{U}_{0}(0, \tau ,\varsigma )\bigr]+\mu \bigl[0- \overline{U}_{0}(1,\tau ,\varsigma )\bigr] \\ &=\overline{k}\mu (1-\mu ) \bigl(\tau ^{2}+1\bigr). \end{aligned} \end{aligned}$$
(81)

From Equation (79), we have

$$\begin{aligned} \begin{aligned} \underline{U}_{1}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\underline{U}_{0}^{*}( \mu , \tau ,{\varsigma})\bigr)_{\mu \mu}-\bigl(\underline{U}_{0}^{*}( \mu ,\tau ,{ \varsigma})\bigr)_{\mu} \bigr] \\ &=-\underline{k}(3-2\mu ) \biggl[ \frac{2\tau ^{\varphi +2}}{\Gamma (\varphi +3)}+ \frac{\tau ^{\varphi}}{\Gamma ({\varphi +1})} \biggr], \end{aligned} \end{aligned}$$
(82)
$$\begin{aligned} \begin{aligned} \overline{U}_{1}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\overline{U}_{0}^{*}( \mu , \tau ,{\varsigma})\bigr)_{\mu \mu}-\bigl(\overline{U}_{0}^{*}( \mu ,\tau ,{ \varsigma})\bigr)_{\mu} \bigr] \\ &=-\overline{k}(3-2\mu ) \biggl[ \frac{2\tau ^{\varphi +2}}{\Gamma (\varphi +3)}+ \frac{\tau ^{\varphi}}{\Gamma ({\varphi +1})} \biggr]. \end{aligned} \end{aligned}$$
(83)

Now, for \(n=1\), Equation (77) becomes

$$\begin{aligned} \begin{aligned} \underline{U_{1}^{*}}(\mu ,\tau , \varsigma )&= \underline{U}_{1}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[0- \underline{U}_{1}(0, \tau ,\varsigma )\bigr]+\mu \bigl[0- \overline{U}_{1}(1,\tau ,\varsigma )\bigr] \\ &=-\underline{k}(3-2\mu ) \biggl[ \frac{2\tau ^{\varphi +2}}{\Gamma (\varphi +3)}+ \frac{\tau ^{\varphi}}{\Gamma ({\varphi +1})} \biggr]+\underline{k}(3-2 \mu ) \biggl[\frac{2\tau ^{\varphi +2}}{\Gamma (\varphi +3)}+ \frac{\tau ^{\varphi}}{\Gamma ({\varphi +1})} \biggr] \\ &=0, \end{aligned} \\ \begin{aligned} \overline{U_{1}^{*}}(\mu ,\tau , \varsigma )&= \overline{U}_{1}(\mu ,\tau ,\varsigma )+(1-\mu )\bigl[0- \overline{U}_{1}(0, \tau ,\varsigma )\bigr]+\mu \bigl[0- \overline{U}_{1}(1,\tau ,\varsigma )\bigr] \\ &=-\overline{k}(3-2\mu ) \biggl[ \frac{2\tau ^{\varphi +2}}{\Gamma (\varphi +3)}+ \frac{\tau ^{\varphi}}{\Gamma ({\varphi +1})} \biggr]+ \overline{k}(3-2 \mu ) \biggl[\frac{2\tau ^{\varphi +2}}{\Gamma (\varphi +3)}+ \frac{\tau ^{\varphi}}{\Gamma ({\varphi +1})} \biggr] \\ &=0. \end{aligned} \end{aligned}$$

From Equation (79), we obtain

$$\begin{aligned} \begin{aligned} \underline{U}_{2}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\underline{U}_{1}^{*}( \mu , \tau ,{\varsigma})\bigr)_{\mu \mu} \bigr] \\ &=0. \end{aligned} \end{aligned}$$
(84)
$$\begin{aligned} \begin{aligned} \overline{U}_{2}(\mu ,\tau ,\varsigma )&= \mathfrak{\mathfrak{I}}^{\varphi} \bigl[\bigl(\overline{U}_{1}^{*}( \mu , \tau ,{\varsigma})\bigr)_{\mu \mu} \bigr] \\ &=0. \\ &\vdots \end{aligned} \end{aligned}$$
(85)

The MFADM solution is

$$\begin{aligned} \begin{aligned} \underline{U}(\mu ,\tau ,\varsigma )&= \underline{U}_{0}( \mu ,\tau ,\varsigma )+\underline{U}_{1}( \mu ,\tau ,\varsigma )+ \underline{U}_{2}(\mu ,\tau ,\varsigma )+\cdots \\ &=\underline{k}\mu (1-\mu ) \bigl(\tau ^{2}+1\bigr), \end{aligned} \end{aligned}$$
(86)
$$\begin{aligned} \begin{aligned} \overline{U}(\mu ,\tau ,\varsigma )&= \overline{U}_{0}( \mu ,\tau ,\varsigma )+\overline{U}_{1}( \mu ,\tau ,\varsigma )+ \overline{U}_{2}(\mu ,\tau ,\varsigma )+\cdots \\ &=\overline{k}\mu (1-\mu ) \bigl(\tau ^{2}+1\bigr). \end{aligned} \end{aligned}$$
(87)

In Fig. 7, we plot the analytical fuzzy solutions for Example 5.4 corresponding to different values of τ and uncertainty ς.

Figure 7
figure 7

2D graph of the analytical lower and upper solutions of Ex. 5.4 at \(\mu =0.5\)

Further, we present in Fig. 8(a,b) surface plots of the analytical fuzzy solutions for Example 5.4 corresponding to different values of μ and τ as well as of uncertainty ς.

Figure 8
figure 8

3D graph of the analytical lower and upper solutions of Ex. 5.4 at \(\mu =0.5\) (a) and \(\tau =0.01\) (b)

6 Conclusion

In this article, we applied the FADM incorporating novel modifications to solve FFPDEs with IBCs. The MFADM observed to be efficient and simple in handling the solution of fuzzy fractional boundary value problems as compared to other analytical methods [18, 31]. The method we discussed used for solving some special examples of TFFDEs and TFFADEs under (i) g\(\mathcal{H}\)-partial differentiability. Furthermore, when we substitute \(k = 0\) in Example 5.1 and Example 5.3, we recover the analytical solutions of the fractional-order problems as in [19] and [12] respectively. Also, when we substitute \(k = 1\) in Example 5.2 and Example 5.4, we recover the analytical solutions of the fractional-order problems as in [20] and [11] respectively. Therefore, the fractional operator with fuzziness provides the global dynamic of the proposed model more than the classical integer and fractional-order model. This suggests that combining fuzzy concepts with fractional calculus leads to a better representation of the dynamics of physical phenomena. Future work will focus on using the proposed method to solve various types of nonlinear FFPDEs.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Alaroud, M., Ababneh, O., Tahat, N., Al-Omari, S.: Analytic technique for solving temporal time-fractional gas dynamics equations with Caputo fractional derivative. AIMS Math. 7, 17647–17669 (2022)

    Article  MathSciNet  Google Scholar 

  2. Ali, E.J.: A new technique of initial boundary value problems using Adomian decomposition method. Int. Math. Forum 7, 799–814 (2012)

    MathSciNet  Google Scholar 

  3. Allahviranloo, T.: Fuzzy Fractional Differential Operators and Equations: Fuzzy Fractional Differential Equations. Springer, Berlin (2020)

    Google Scholar 

  4. Allahviranloo, T., Salahshour, S., Abbasbandy, S.: Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 16, 297–302 (2012)

    Article  Google Scholar 

  5. Alqurashi, M.S., Rashid, S., Kanwal, B., Jarad, F., Elagan, S.K.: A novel formulation of the fuzzy hybrid transform for dealing nonlinear partial differential equations via fuzzy fractional derivative involving general order. AIMS Math. 7, 14946–14974 (2022)

    Article  MathSciNet  Google Scholar 

  6. Arfan, M., Shah, K., Abdeljawad, T., Hammouch, Z.: An efficient tool for solving two-dimensional fuzzy fractional-ordered heat equation. Numer. Methods Partial Differ. Equ. 37, 1407–1418 (2021)

    Article  MathSciNet  Google Scholar 

  7. Arif, M., Ali, F., Sheikh, N.A., Khan, I., Nisar, K.S.: Fractional model of couple stress fluid for generalized Couette flow: a comparative analysis of Atangana–Baleanu and Caputo–Fabrizio fractional derivatives. IEEE Access 7, 88643–88655 (2019)

    Article  Google Scholar 

  8. Alsauodi, M., Alhorani, M., Khalil, R.: Solutions of certain fractional partial differential equations. WSEAS Trans. Math. 20, 504–507 (2021)

    Article  Google Scholar 

  9. Bayrak, M.A., Demir, A.: On the challenge of identifying space dependent coefficient in space-time fractional diffusion equations by fractional scaling transformations method. Turk. J. Sci. 7, 132–145 (2022)

    Google Scholar 

  10. Dokuyucu, M.A.: Analysis of a novel finance chaotic model via ABC fractional derivative. Numer. Methods Partial Differ. Equ. 37, 1583–1590 (2021)

    Article  MathSciNet  Google Scholar 

  11. Doley, S., Kumar, A.V., Jino, L.: Upwind scheme of Caputo time fractional advection diffusion equation. Adv. Appl. Math. Sci. 21, 1239–1247 (2022)

    Google Scholar 

  12. Fazio, R., Jannelli, A., Agreste, S.: A finite difference method on non-uniform meshes for time-fractional advection–diffusion equations with a source term. Appl. Sci. 8, 960 (2018)

    Article  Google Scholar 

  13. Ghazanfari, B., Ebrahimi, P.: Differential transformation method for solving fuzzy fractional heat equations. Int. J. Math. Model. Comput. 5, 81–89 (2015)

    Google Scholar 

  14. Harir, A., Melliani, S.A.İ.D., Saadia, C.: An algorithm for the solution of fuzzy fractional differential equation. J. Univers. Math. 3, 11–20 (2020)

    Article  Google Scholar 

  15. İlhan, E.: Analysis of the spread of Hookworm infection with Caputo–Fabrizio fractional derivative. Turk. J. Sci. 7, 43–52 (2022)

    Google Scholar 

  16. Keshavarz, M., Allahviranloo, T.: Fuzzy fractional diffusion processes and drug release. Fuzzy Sets Syst. 436, 82–101 (2022)

    Article  MathSciNet  Google Scholar 

  17. Kumar, S.: Numerical solution of fuzzy fractional diffusion equation by Chebyshev spectral method. Numer. Methods Partial Differ. Equ. 38, 490–508 (2022)

    MathSciNet  Google Scholar 

  18. Kumar, S., Gupta, V.: An application of variational iteration method for solving fuzzy time-fractional diffusion equations. Neural Comput. Appl. 33, 17659–17668 (2021)

    Article  Google Scholar 

  19. Masood, S., Khan, H., Shah, R., Mustafa, S., Khan, Q., Arif, M., Tchier, F., Singh, G.: A new modified technique of Adomian decomposition method for fractional diffusion equations with initial-boundary conditions. J. Funct. Spaces 2022, Article ID 6890517 (2022)

    MathSciNet  Google Scholar 

  20. Mohamed, M., Hamza, A., Elzaki, T., Algolam, M., Elhussein, S.: Solution of fractional heat-like and fractional wave-like equation by using modern strategy. Acta Mech. Autom. 17, 372–380 (2023)

    Google Scholar 

  21. Mustafa, S., Hajira, K.H., Shah, R., Masood, S.: A novel analytical approach for the solution of fractional-order diffusion-wave equations. Fractal Fract. 5, 206 (2021)

    Article  Google Scholar 

  22. Osman, M., Gong, Z.T., Mustafa, A.M.: Comparison of fuzzy Adomian decomposition method with fuzzy VIM for solving fuzzy heat-like and wave-like equations with variable coefficients. Adv. Cont. Discr. Mod. 2022, 1–42 (2020)

    Google Scholar 

  23. Osman, M., Xia, Y.: Solving fuzzy fractional differential equations with applications. Alex. Eng. J. 69, 529–559 (2023)

    Article  Google Scholar 

  24. Osman, M., Xia, Y., Marwan, M., Omer, O.A.: Novel approaches for solving fuzzy fractional partial differential equations. Fractal Fract. 6, 656 (2022)

    Article  Google Scholar 

  25. Pandey, P., Singh, J.: An efficient computational approach for nonlinear variable order fuzzy fractional partial differential equations. Comput. Appl. Math. 41, 1–21 (2022)

    Article  MathSciNet  Google Scholar 

  26. Priyadharsini, S., Gowri, P., Aparna, T.: Solution of fractional telegraph equation with fuzzy initial condition. Int. J. Math. Appl. 6, 147–154 (2018)

    Google Scholar 

  27. Qayyum, M., Tahir, A., Acharya, S.: New solutions of fuzzy-fractional Fisher models via optimal He–Laplace algorithm. Int. J. Intell. Syst. 2023, Article ID 7084316 (2023)

    Article  Google Scholar 

  28. Rashid, S., Ashraf, R., El-Deeb, A.A., García Guirao, J.L., Althobaiti, A.: A novel configuration of the Fuzzy Elzaki transform for solving nonlinear partial differential equations via fuzzy fractional derivative with general order. Fractal Fract. 2021 (2021)

  29. Reunsumrit, J., Sher, M., Shah, K., Alreshidi, N.A., Shutaywi, M.: On fuzzy partial fractional order equations under fuzzified conditions. Fractals 30, 2240025 (2022)

    Article  Google Scholar 

  30. Saeed, N.A., Pachpatte, D.B.: Usage of the fuzzy Adomian decomposition method for solving some fuzzy fractional partial differential equations. Adv. Fuzzy Syst. 2024, 1–15 (2024)

    Article  Google Scholar 

  31. Salah, A., Khan, M., Gondal, M.A.: A novel solution procedure for fuzzy fractional heat equations by homotopy analysis transform method. Neural Comput. Appl. 23, 269–271 (2013)

    Article  Google Scholar 

  32. Salahshour, S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simul. 17, 1372–1381 (2012)

    Article  MathSciNet  Google Scholar 

  33. Senol, M., Atpinar, S., Zararsiz, Z., Salahshour, S., Ahmadian, A.: Approximate solution of time-fractional fuzzy partial differential equations. Comput. Appl. Math. 38, 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  34. Shah, K., Seadawy, A.R., Arfan, M.: Evaluation of one dimensional fuzzy fractional partial differential equations,”. Alex. Eng. J. 59, 3347–3353 (2020)

    Article  Google Scholar 

  35. Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: Fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018)

    MathSciNet  Google Scholar 

  36. Sitthiwirattham, T., Arfan, M., Shah, K., Zeb, A., Djilali, S., Chasreechai, S.: Semi-analytical solutions for fuzzy Caputo–Fabrizio fractional-order two-dimensional heat equation. Fractal Fract. 5, 139 (2021)

    Article  Google Scholar 

  37. Usman, M., Khan, H.U., Khan, Z.A., Alrabaiah, H.: Study of nonlinear generalized Fisher equation under fractional fuzzy concept. AIMS Math. 8, 16479–16493 (2023)

    Article  MathSciNet  Google Scholar 

  38. Zureigat, H., Al-Smadi, M., Al-Khateeb, A., Al-Omari, S., Alhazmi, S.E.: Fourth-order numerical solutions for a fuzzy time-fractional convection–diffusion equation under Caputo generalized Hukuhara derivative. Fractal Fract. 7, 47 (2022)

    Article  Google Scholar 

  39. Zureigat, H., Ismail, A.I., Sathasivam, S.: Numerical solutions of fuzzy fractional diffusion equations by an implicit finite difference scheme. Neural Comput. Appl. 31, 4085–4094 (2019)

    Article  Google Scholar 

  40. Zureigat, H., Ismail, A.I., Sathasivam, S.: Numerical solutions of fuzzy time fractional advection-diffusion equations in double parametric form of fuzzy number. Math. Methods Appl. Sci. 44, 7956–7968 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Author 1 (Nagwa A. Saeed) wrote the whole manuscript and Author 2 (Deepak B. Pachpatte) reviewed the manuscript.

Corresponding author

Correspondence to Nagwa A. Saeed.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, N.A., Pachpatte, D.B. A modified fuzzy Adomian decomposition method for solving time-fuzzy fractional partial differential equations with initial and boundary conditions. Bound Value Probl 2024, 82 (2024). https://doi.org/10.1186/s13661-024-01885-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01885-9

Mathematics Subject Classification

Keywords