- Research
- Open access
- Published:
New results on fractional advection–dispersion equations
Boundary Value Problems volume 2024, Article number: 101 (2024)
Abstract
In this paper, a class of fractional Sturm–Liouville advection–dispersion equations with instantaneous and noninstantaneous impulses is considered, in particular, the nonlinearities discussed here include Caputo fractional derivatives. Since the nonlinear terms contain fractional derivatives, this problem does not directly have variational structure, we need to combine critical point theory and an iterative method to deal with such problems. Finally, the existence of at least one nontrivial solution is proved by the mountain pass theorem and the iterative method. At the same time, an example is given to illustrate the main result.
1 Introduction
In this paper, we study the following class of fractional advection–dispersion equations whose nonlinear terms contain Caputo fractional derivatives, and the equations have inhomogeneous Sturm–Liouville boundary conditions, instantaneous and noninstantaneous impulses:
where \(0\leq \beta <1\), \(\alpha =1-\frac{\beta}{2}\), and \(\frac{1}{2}<\alpha \leq 1\). \(\lambda >0\) and \(\mu >0\) are two parameters, \(a, b, c, d>0\), A and B are real numbers. and denote the left and right Riemann–Liouville fractional integrals of order β, respectively. denotes the left Caputo fractional derivatives of order α. \(0=s_{0}< t_{1}< s_{1}< t_{2}< s_{2}<\cdots <t_{m}<s_{m}<t_{m+1}=T\). \(f_{j}\in C((s_{j},t_{j+1}]\times \mathbb{R}\times \mathbb{R}, \mathbb{R})\) and \(F_{j}(t,u,y)=\int _{0}^{u}f_{j}(t,s,y)\mathrm{d}s\). The instantaneous impulses \(I_{j}\in C(\mathbb{R},\mathbb{R})\) start to change suddenly at the points \(t_{j}\), and the noninstantaneous impulses continue during the finite intervals \((t_{j},s_{j}]\) for \(j=1,\ldots ,m\). Besides,
where
The emergence of the fractional advection–dispersion equation can effectively solve the problem that classical second-order convection–diffusion equation cannot accurately simulate the anomalous diffusion phenomenon, so the fractional advection–dispersion equation is widely applied in the anomalous diffusion phenomena, such as groundwater and soil pollution, porous media, fluid mechanics, polymer and nuclear magnetic resonance (see [5, 14, 27]). Not only that, the fractional advection–dispersion equation has also been extensively used in the simulation of turbulent flow, chaotic dynamics of classical conservative systems, and other physical phenomena (see [1, 3, 22]). There have been some related studies (see [2, 4, 9, 24, 29]), for example, reference [11] considered the following symmetric fractional advection–dispersion equation with Dirichlet boundary value condition:
where \(0\leq \beta <1\), \(\lambda >0\). When the nonlinear term did not meet the Ambrosetti–Rabinowitz condition, the authors gave the existence of solutions of the above equation through the minimization principle. However, the authors did not consider the impact of impulses.
Regarding the instantaneous and noninstantaneous impulses, the most prominent feature of instantaneous impulse is that it can more deeply and accurately reflect the changing laws of things and fully consider the impact of instantaneous sudden changes on the state. What is more, we also need to point out that the noninstantaneous impulse proposed by Hernández in 2013 can successfully solve the problem that instantaneous impulse cannot be used to simulate the evolution process of phenomena such as dynamics (see [12]). For related research work, please refer to literature [16, 31]; especially, in the literature [30], the authors studied the following fractional noninstantaneous impulse differential equations:
where \(\frac{1}{2}<\alpha \leq 1\), and they got the existence of at least one solution of this boundary value problem by using the minimization principle. Note that the authors considered the Dirichlet condition here.
Last but not least, the Sturm–Liouville problem arose in the Fourier treatment of heat conduction. Later, Sturm and Liouville generalized the Fourier method, which formed the famous Sturm–Liouville theory. And the Sturm–Liouville problem plays an important role in heat conduction of uniform thin tube of finite length, axial and torsional vibration of rod, and microwave transmission (see [13, 18]). Based on the above, the Sturm–Liouville problem has also come into the attention of scholars in recent years (see [21, 23]). Reference [8] focused on the existence and uniqueness of solutions to the Sturm–Liouville problem with Hilfer fractional differentiation based on Banach’s fixed point theorem and analyzed the behavior of the solutions. Later, the author used the Laplace–Adomian decomposition method to study the series solutions of fractional Sturm–Liouville equations with singular and nonsingular kernels, respectively (see [7]). And [28] discussed the following symmetric fractional advection–dispersion equation with only homogeneous Sturm–Liouville boundary value condition:
where \(0\leq \beta <1\), \(a,c>0\), \(b,d\geq 0\), and \(\lambda >0\). The existence of infinitely many solutions to this boundary value problem was obtained by using the Ricceri generalized variational principle when \(f:\mathbb{R}\rightarrow \mathbb{R}\) was an almost everywhere continuous function.
Compared with the above excellent work, the nonlinear terms in the boundary value problem (BVP as an abbreviation) (1.1) contain fractional derivatives, which means that BVP (1.1) has no direct variational structure, which makes the treatment of this kind of problem not only rely on the critical point theory, but also be combined with the iterative method. Because the research process is relatively complicated, there are a few studies on the existence of solutions of fractional differential equations with fractional derivatives in nonlinear terms (see [6, 10]). Recently, reference [19] considered the following p-Laplacian fractional differential boundary value problem with Dirichlet condition:
where \(\frac{1}{p}<\alpha \leq 1\), \(p\geq 2\) and \(\lambda \geq 0\). \(\omega \in L^{\infty}[0,T]\), \(\phi _{p}(s)=|s|^{p-2}s\), \(f\in C([0,T]\times \mathbb{R}\times \mathbb{R},\mathbb{R})\), and \(h:\mathbb{R}\rightarrow \mathbb{R}\) is Lipschitz continuous. The authors proved that there was at least one solution to the above problem via the mountain pass theorem. On the basis of this article, the authors used the same method to investigate the existence of solutions for fractional \((p,q)\)-Laplacian differential systems with nonlinear terms containing fractional derivatives, instantaneous impulses, and Dirichlet conditions (see [20]).
Inspired by the above research background and the existing research work, this article investigates BVP (1.1). The research on fractional advection–dispersion equations has been ongoing, but to our knowledge, there is no work that studies the nonlinear terms of fractional advection–dispersion equations that include fractional derivatives, let alone systems with nonhomogeneous Sturm–Liouville conditions and noninstantaneous impulse conditions. Note that when the coefficients and constant terms in the nonhomogeneous Sturm–Liouville condition are selected as 0 and 1, the Sturm–Liouville condition will degenerate into the Dirichlet boundary value condition, which means that the Sturm–Liouville condition is more general. In these respects, the problem studied in this paper is new and necessary. What is more, as for the assumptions, the assumptions of the impulse terms in this paper are weaker than the corresponding parts in reference [6], which is a highlight of this paper.
2 Preliminaries
For convenience, in this section we remind the readers of the relevant definitions and properties of fractional calculus.
Definition 2.1
[17, 25] Let u be a function defined on \([0,T]\). The left and right Riemann–Liouville fractional integrals of order \(0<\gamma \leq 1\) for the function u denoted by and , respectively, are defined by
and
provided the right-hand sides are pointwise defined on \([0,T]\), where \(\Gamma >0\) is the gamma function.
Definition 2.2
[17, 25] Let u be a function defined on \([0,T]\). The left and right Riemann–Liouville fractional derivatives of order \(0<\gamma \leq 1\) for the function u denoted by and , respectively, are defined by
and
where \(t\in [0,T]\).
Definition 2.3
[17, 25] Let \(u\in AC([0,T],\mathbb{R}^{N})\). Then the left and right Caputo fractional derivatives of order \(0<\gamma \leq 1\) for the function u denoted by and , respectively, are defined by
and
where \(t\in [0,T]\).
Property 2.1
[17] Let u be continuous for a.e. \(t\in [0,T]\), the left and right Riemann–Liouville fractional integral operators have the following properties:
Property 2.2
[17] If \(u\in L^{p}([0,T],\mathbb{R}^{N})\), \(v\in L^{q}([0,T],\mathbb{R}^{N})\) and \(p\geq 1\), \(q\geq 1\), \(\frac{1}{p}+\frac{1}{q}\leq 1+\gamma \) or \(p\neq 1\), \(q\neq 1\), \(\frac{1}{p}+\frac{1}{q}=1+\gamma \). Then
Property 2.3
[17] If \(0<\gamma \leq 1\) and \(u\in AC([0,T],\mathbb{R}^{N})\), then
According to Definition 2.3 and Property 2.1, we know that
where \(\alpha =1-\frac{\beta}{2}\) and \(\frac{1}{2}<\alpha \leq 1\).
Let \(L^{p}([0,T],\mathbb{R})(1\leq p<\infty )\) and \(C([0,T],\mathbb{R})\) be the p-Lebesgue space and a continuous function space, respectively, with the norms
and
Definition 2.4
Let \(\frac{1}{2}<\alpha \leq 1\) and \(1\leq p<\infty \). The fractional derivative space \(E^{\alpha ,p}\) is defined as the closure of \(C^{\infty}([0,T],\mathbb{R})\), that is, \(E^{\alpha ,p}=\overline{C^{\infty}([0,T],\mathbb{R})}\) with the norm
It is obvious that \(E^{\alpha ,p}\) is the space of functions \(u(t)\in L^{p}([0,T],\mathbb{R})\) with an α order Caputo fractional derivative . According to [15], the space \(E^{\alpha ,p}\) with \(p\in (1,\infty )\) is a reflexive and separable Banach space. What is more, for the convenience of writing, when \(p=2\), we mark \(E^{\alpha ,2}\) as X.
For the convenience of readers, we will review Hölder’s inequality and Young’s inequality here.
Hölder’s inequality: If \(u\in L^{p}([0,T],\mathbb{R}^{N})\), \(v\in L^{q}([0,T],\mathbb{R}^{N})\), \(p\geq 1\), and \(\frac{1}{p}+\frac{1}{q}=1\). Then
Young’s inequality: If x and y are nonnegative real numbers, \(p>1\) and \(\frac{1}{p}+\frac{1}{q}=1\). Then
where \(C(\Upsilon )=\frac{(p\Upsilon )^{-\frac{q}{p}}}{q}\).
Lemma 2.1
[28] If \(\frac{1}{2}<\alpha \leq 1\), then for any \(u\in X\) we have
Lemma 2.2
The norm \(\|u\|_{\alpha ,2}\) in X is equivalent to
Combining Property 2.3, Lemma 2.1, and Hölder’s inequality, the following lemma can be derived.
Lemma 2.3
There is a continuous and compact embedding \(X\hookrightarrow C([0,T],\mathbb{R})\). And there exists a constant \(\Lambda >0\) such that
for \(u\in X\), where \(\|u\|\) is defined by (2.2).
Lemma 2.4
[15] Assume that \(\frac{1}{2}<\alpha \leq 1\) and the sequence \(\{u_{n}\}\) weakly converges to u in X, that is, \(u_{n}\rightharpoonup u\) in X. Then \(u_{n}\rightarrow u\) in \(C([0,T],\mathbb{R})\), that is,
as \(n\rightarrow \infty \).
It follows from the boundary conditions of BVP (1.1), integration by parts, and (2.1) that we can define the weak solution u of BVP (1.1) as follows.
Definition 2.5
A function \(u\in X\) is called the weak solution of BVP (1.1) if u satisfies the following equation:
Since there is no way to define the energy functional for BVP (1.1) directly, for each \(u\in X\), we first fix any \(\omega \in X\) and define \(J_{\omega}:X\rightarrow \mathbb{R}\) as shown below
Then, according to the existing conditions, the Fréchet derivative of \(J_{\omega}\) at point \(u\in X\) can be obtained as
It follows from Definition 2.5 that if \(u\in X\) is a solution of \(J_{u}'(u)v=0\), then u is a weak solution of BVP (1.1). And, by [31], the weak solution of BVP (1.1) is its classical solution.
Lemma 2.5
[26] Let E be a real Banach space and \(J\in C(E,\mathbb{R})\) satisfy the Palais–Smale condition (\((PS)\)-condition for short). Suppose that
\((1)\) \(J(0)=0\);
\((2)\) There exist \(\rho >0\) and \(\vartheta >0\) such that \(J(u_{0})\geq \vartheta \) for all \(u_{0}\in E\) with \(\|x_{0}\|=\rho \);
\((3)\) There exists \(u_{1}\in E\) with \(\|u_{1}\|\geq \rho \) such that \(J(u_{1})<\vartheta \).
Then \(z=\inf _{h\in \bar{\Delta}}\max _{t\in [0,1]}J(h(t))\geq \vartheta \) is a critical value of J, where
3 Main results
Now, we make the following hypotheses.
\((H_{1})\) For \(j=1,\ldots ,m\), there exist some constants \(L_{j}\), \(\bar{L}_{j}\), \(M_{j}\), \(\bar{M}_{j}>0\) and \(0\leq \tau _{j}\), \(\bar{\tau}_{j}<1\) such that
\((H_{2})\) For \(j=1,\ldots ,m\), there exist some constants \(R_{j}>0\) such that
where \(C^{\ast}=\Lambda C_{1}\), Λ is defined by Lemma 2.3, \(C_{1}\) will be given later.
\((H_{3})\) For \(j=0,1,\ldots ,m\) and \(t\in (s_{j},t_{j+1}]\), there exist some constants \(K_{1}\), \(K_{2}\), \(N_{2}\), \(N_{3}\geq 0\), \(N_{1}>0\), η, σ, \(\varpi >1\), \(0<\iota <2\), \(\delta >0\), \(0<\zeta <1\) such that
\((H_{4})\) For \(j=0,1,\ldots ,m\) and \(t\in (s_{j},t_{j+1}]\), there exist some constants \(P_{1}\), \(P_{2}\), \(P_{3}\geq 0\), \(\theta >2\), \(0<\xi \), \(\varrho <2\) such that
\((H_{5})\) For \(j=0,1,\ldots ,m\) and \(t\in (s_{j},t_{j+1}]\), there exist some constants \(Q_{1}\), \(Q_{2}>0\) such that
For the convenience of writing, we first define a few notations, as shown below.
Theorem 3.1
If \(O_{1}>0\) and \(\mu O_{2}+\lambda O_{3}< O_{1}\), suppose that \((H_{1})-(H_{5})\) hold, then BVP (1.1) admits at least one nontrivial solution.
Proof
The whole proof process is divided into three steps.
Step 1: Prove that \(J_{\omega}\) satisfies the \((PS)\)-condition.
Suppose that \(\{u_{n}\}\subset X\) is a sequence with \(\{J_{\omega}(u_{n})\}\) bounded and \(\lim _{n\rightarrow \infty}J'_{\omega}(u_{n})=0\). Then, for any fixed \(\omega \in X\) with \(\|\omega \|\leq C_{1}\), according to Lemma 2.3, \((H_{1})\), and \((H_{4})\), it follows from (2.3) and (2.4) that
Note the assumptions of \(1\leq \tau _{j}+1\), \(\bar{\tau}_{j}+1<2\), \(\theta >2\), and \(0<\xi <2\) and the fact that \(J_{\omega}(u_{n})\) is bounded and \(\lim _{n\rightarrow \infty}J'_{\omega}(u_{n})u_{n}=0\), so we get that \(\{u_{n}\}\) is bounded in X.
On one hand, since \(\{u_{n}\}\) is bounded in X and X is a reflexive space, there exists a subsequence of \(\{u_{n}\}\), still record this subsequence as \(\{u_{n}\}\), such that \(u_{n}\rightharpoonup u\) in X. Then, based on Lemma 2.4, we get \(u_{n}\rightarrow u\) in \(C([0,T],\mathbb{R})\). Thereby,
as \(n\rightarrow \infty \). On the other hand, in view of (2.4), we have
as \(n\rightarrow \infty \). Combining the above two aspects, we can get \(u_{n}\rightarrow u\) in X. In summary, \(J_{\omega}\) satisfies the \((PS)\)-condition.
Step 2: Prove that \(J_{\omega}\) admits a critical point by the mountain pass theorem.
Let \(0<\rho =\frac{\delta}{\Lambda}\) and \(\|u\|=\rho \), then from Lemma 2.3 one has \(\|u\|_{\infty}\leq \Lambda \|u\|=\Lambda \rho =\delta \) for \(u\in X\), where δ is given as \((H_{3})\). Further, notice that (2.3), \((H_{1})\), and \((H_{3})\), using Hölder’s inequality and Lemma 2.1, we can get
Recall that we assume \(O_{1}>0\) and \(\mu O_{2}+\lambda O_{3}< O_{1}\), so we chose ρ small enough so that \(J_{\omega}(u)\geq \vartheta >0\) for \(\|u\|=\rho \).
Next, let us define \(\bar{u}_{0}(t)=\frac{u_{0}(t)}{\|u_{0}\|}\in X\) and \(\|\bar{u}_{0}\|=1\). Hence, for any \(\chi >0\), by (2.3), \((H_{3})\), and Lemma 2.3, we get
It follows from \(\varpi +1>2\) and \(1\leq \bar{\tau}_{j}+1<2\) that \(J_{\omega}(\chi \bar{u}_{0}(t))\rightarrow -\infty \) as \(\chi \rightarrow \infty \), which means that there exists \(\chi _{0}>0\) large enough such that \(J_{\omega}(\chi _{0}\bar{u}_{0})<0\) with \(\|\chi _{0}\bar{u}_{0}\|>\rho \).
Finally, combined with \(J_{\omega}(0)=0\), according to the mountain pass theorem, it can be inferred that there is a point \(\bar{u}\in X\) such that \(J'_{\omega}(\bar{u})=0\) and \(J_{\omega}(\bar{u})\geq \vartheta >0\).
Step 3: Construct the sequence \(\{u_{n}\}\subset X\) such that \(u_{n}\rightarrow u^{\ast}\) in X, and \(u^{\ast}\) is the solution to BVP (1.1).
Suppose a sequence \(\{u_{n}\}\subset X\) satisfying \(J'_{u_{n-1}}(u_{n})=0\) and \(J_{u_{n-1}}(u_{n})\geq \vartheta >0\) with \(\|u_{n}\|\leq C_{1}\) for all \(n\in \mathbb{N}\). For certain \(u_{1}\in X\) with \(\|u_{1}\|\leq C_{1}\). From Step 2, it can be seen that there is \(u_{2}\in X\) such that \(J'_{u_{1}}(u_{2})=0\) and \(J_{u_{1}}(u_{2})\geq \vartheta >0\).
And then we are going to prove that \(\|u_{2}\|\leq C_{1}\). As a matter of fact, by (3.1) and Lemma 2.1, we have
where
Define \(G(\chi ) =\frac{1}{2}\chi ^{2} +C_{2}\chi +C_{3}\chi ^{\bar{\tau}_{j}+1} -C_{4}\chi ^{\varpi +1}\), then we discuss \(G(\chi )\) in two cases.
Case 1: When \(0\leq \chi \leq 1\), we have \(G(\chi )\leq \frac{1}{2}+C_{2}+C_{3}=C_{5}\).
Case 2: When \(1\leq \chi <\infty \), one has \(G(\chi )\leq (\frac{1}{2}+C_{2}+C_{3})\chi ^{2}-C_{4}\chi ^{\varpi +1}\) for \(1\leq \bar{\tau}_{j}+1<2\) and \(\varpi +1>2\). In this case, let \(H(\chi )=(\frac{1}{2}+C_{2}+C_{3})\chi ^{2}-C_{4}\chi ^{\varpi +1}\), then if \(H'(\chi )=2(\frac{1}{2}+C_{2}+C_{3})\chi -C_{4}(\varpi +1)\chi ^{ \varpi}=0\), it can be calculated that \(H(\bar{\chi})=\max _{1\leq \chi <\infty}H(\chi )=C_{6}\), when \(\chi =\bar{\chi}=\bigg( \frac{2(\frac{1}{2}+C_{2}+C_{3})}{C_{4}(\varpi +1)}\bigg)^{ \frac{1}{\varpi -1}}\). In conclusion, \(J_{u_{1}}(u_{2})\leq \max \{C_{5},C_{6}\}=D\).
On the other hand, by \((H_{4})\), (2.3), and (2.4), combining Lemma 2.1 and Lemma 2.3, we get
where
and
are obtained by Young’s inequality. Besides,
Arrange both sides of (3.2) to get
Take \(C_{1}=\bigg(\frac{10}{\theta -2}(\theta D +D^{\ast}_{1} +D^{\ast}_{2} +D^{\ast}_{3} +D^{\ast}_{4} + \frac{\lambda P_{2}T^{\frac{2-\varrho}{2}}C_{1}^{\varrho}}{(-\cos \pi \alpha )^{\frac{\varrho}{2}}} +\lambda P_{3}T)\bigg)^{\frac{1}{2}}\) to get \(\|u_{2}\|\leq C_{1}\). Thus, according to this processing method, it is natural to prove that \(\|u_{n}\|\leq C_{1}\) for every \(n\in \mathbb{N}\). Since \(\|u_{n}\|\leq C_{1}\), \(\|u_{n}\|_{\infty}\leq \Lambda C_{1}=C^{\ast}\) can be obtained by Lemma 2.3.
According to the above, we know that there exists a subsequence of \(\{u_{n}\}\), still record this subsequence as \(\{u_{n}\}\), such that \(u_{n}\rightharpoonup u^{\ast}\) in X. Then, based on Lemma 2.4, we get \(u_{n}\rightarrow u^{\ast}\) in \(C([0,T],\mathbb{R})\). And then we have to prove that \(u_{n}\rightarrow u^{\ast}\) in X.
Proof by contradiction. Suppose that \(\{u_{n}\}\) diverges in X, i.e., there exists \(\epsilon _{0}>0\) for any \(N>0\) such that for all \(n>N\) we have \(\|u_{n+1}-u_{n}\|\geq \epsilon _{0}\).
In view of \(J'_{u_{n}}(u_{n+1})(u_{n+1}-u_{n})=0\) and \(J'_{u_{n-1}}(u_{n})(u_{n+1}-u_{n})=0\), based on \((H_{2})\), \((H_{5})\), and Lemma 2.1, one can get
Simplify the above formula and arrange it to get
where \(Z=2C^{\ast}\mu \sum _{j=1}^{m}R_{j}+2\lambda Q_{1}TC^{\ast}+2 \lambda Q_{2}C_{1}\bigg(\frac{T}{-\cos \pi \alpha}\bigg)^{\frac{1}{2}}\). Thus, there is \(\epsilon '_{0}>0\) for any \(N>0\) such that for all \(n>N\) ě we get \(\|u_{n+1}-u_{n}\|_{\infty}\geq \epsilon '_{0}\), which is in contradiction with \(u_{n}\rightarrow u^{\ast}\) in \(C([0,T],\mathbb{R})\) as \(n\rightarrow \infty \). In other words, we can get \(u_{n}\rightarrow u^{\ast}\) in X as \(n\rightarrow \infty \), and then
as \(n\rightarrow \infty \). Combining the fact that \(J'_{u_{n-1}}(u_{n})v=0\) for all \(v\in X\) gives \(J'_{u^{\ast}}(u^{\ast})v=0\) for all \(v\in X\), which implies that \(u^{\ast}\) is a weak solution of BVP (1.1). Similarly, it can be proved that \(\lim _{n\rightarrow \infty}J_{u_{n-1}}(u_{n})=J_{u^{\ast}}(u^{\ast})\), and it follows from \(J_{u_{n-1}}(u_{n})\geq \vartheta >0\) that \(J_{u^{\ast}}(u^{\ast})\geq \vartheta >0\), which indicates that \(u^{\ast}\) is a nontrivial classical solution of BVP (1.1). □
4 Examples
Example 4.1
Let \(\beta =\frac{1}{3}\), \(\alpha =1-\frac{\beta}{2}=\frac{5}{6}\), \(T=m=1\), \(\lambda =\mu =2\), \(a=b=1\), \(c=d=3\), and \(A=B=2\). Consider the following fractional boundary value problem:
where \(0=s_{0}< t_{1}=\frac{1}{3}< s_{1}=\frac{2}{3}< t_{2}=1\). Let \(I_{1}(u)=|u|^{\frac{1}{2}}\), there exist \(L_{1}=\bar{L}_{1}=2\), \(M_{1}=\bar{M}_{1}=1\), and \(\tau _{1}=\bar{\tau}_{1}=\frac{1}{2}\) such that \((H_{1})\) holds. And we easily know that \((H_{2})\) holds with \(R_{1}=1\). Choose \(F_{j}(t,x,y)=(1+t)x^{6}+t^{2}x^{3}\sin ^{2}y+2|\cos t|\), so \(f_{j}(t,x,y)=6(1+t)x^{5}+3t^{2}x^{2}\sin ^{2}y\). When \(K_{1}=12\), \(K_{2}=3\), \(N_{1}=6\), \(N_{2}=N_{3}=0\), \(\delta =2\), \(\eta =5\), \(\sigma =2\), \(\iota =1\), \(\varpi =5\) and \(\zeta =\frac{1}{2}\), \((H_{3})\) holds. Moreover, \((H_{4})\) and \((H_{5})\) hold for \(\theta =6\), \(P_{1}=P_{2}=0\), \(P_{3}=12\), \(\xi =\varrho =1\), \(Q_{1}=60(C^{\ast})^{4}+6C^{\ast}\), and \(Q_{2}=12(C^{\ast})^{2}\). Thus, based on Theorem 3.1, BVP (4.1) has at least one nontrivial solution.
5 Conclusion
This article considers a class of fractional advection–dispersion equations with Sturm–Liouville conditions and instantaneous, noninstantaneous impulses, where the nonlinear term includes fractional Caputo derivatives, i.e., BVP (1.1). Since BVP (1.1) does not have a direct variational structure, after defining the function space, we construct a convergent sequence through iterative methods and combine the mountain pass theorem to ensure that the limit of the sequence is the solution of BVP (1.1). It should be pointed out that Sturm–Liouville conditions in BVP (1.1) are more general than the Dirichlet condition, and the assumptions set in this article are looser. Therefore, the work done in this article fills a gap in the research field of fractional advection–dispersion equations.
Availability of data and materials
Not applicable.
References
Agarwal, R., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)
Ao, Y., Wang, J., Zou, W.: On the existence and regularity of vector solutions for quasilinear systems with linear coupling. Sci. China Math. 62(1), 125–146 (2019)
Bai, Z., Lv, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)
Baldi, A., Franchi, B., Pansu, P.: \({L}^{1}\)-Poincaré and Sobolev inequalities for differential forms in Euclidean spaces. Sci. China Math. 62(6), 1029–1040 (2019)
Benson, D., Wheatcraft, S., Meerschaert, M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)
Chai, G., Chen, J.: Existence of solutions for impulsive fractional boundary value problems via variational method. Bound. Value Probl. 2017(23), 23 (2017)
Ercan, A.: Comparative analysis for fractional nonlinear Sturm-Liouville equations with singular and non-singular kernels. AIMS Math. 7(7), 13325–13343 (2022)
Ercan, A., Ozarslan, R., Bas, E.: Existence and uniqueness analysis of solutions for Hilfer fractional spectral problems with applications. Comput. Appl. Math. 40(5), 1–18 (2021)
Ervin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equations. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)
Figueriredo, D., Girardi, M., Matzeu, M.: Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques. Differ. Integral Equ. 17, 119–126 (2004)
Ge, B., Lu, J., Zhao, T., Zhou, K.: Superlinear fractional boundary value problems without the Ambrosetti-Rabinowitz condition. Electron. J. Differ. Equ. 85, 1–13 (2018)
Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)
Jiang, W., Huang, X., Wang, B.: The existence of solutions to boundary value problems of fractional differential equations at resonance. Nonlinear Anal. 74(5), 1987–1994 (2011)
Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62, 1181–1199 (2011)
Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos 22, 1–17 (2012)
Khaliq, A., Rehman, M.: On variational methods to non-instantaneous impulsive fractional differential equation. Appl. Math. Lett. 83, 95–102 (2018)
Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)
Klimek, M., Odzijewicz, T., Malinowska, A.: Variational methods for the fractional Sturm-Liouville problem. J. Math. Anal. Appl. 416(1), 402–426 (2014)
Li, D., Chen, F., An, Y.: Existence of solutions for fractional differential equation with p-Laplacian through variational method. J. Appl. Anal. Comput. 8(6), 1778–1795 (2018)
Li, D., Chen, F., Wu, Y., An, Y.: Variational formulation for nonlinear impulsive fractional differential equations with \((p,q)\)-Laplacian operator. Math. Methods Appl. Sci. 45(1), 515–531 (2022)
Li, Y., Sun, H., Zhang, Q.: Existence of solutions to fractional boundary-value problems with a parameter. Electron. J. Differ. Equ. 2013(141), 7139795 (2013)
Lian, H.: Boundary value problems for nonlinear ordinary differential equations on infinite intervals. Doctoral Thesis (2007)
Liu, F., Burrage, K.: Novel techniques in parameter estimation for fractional dynamical models arising from biological systems. Comput. Math. Appl. 62(3), 822–833 (2011)
Ma, D., Liu, L., Wu, Y.: Existence of nontrivial solutions for a system of fractional advection-dispersion equations. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 1041–1057 (2019)
Podlubny, I.: Fractional Differential Equations. Academic Press, New Tork (1999)
Rabinowitz, P.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Am. Math. Soc., Providence (1986)
Shlesinger, M., West, B., Klafter, J.: Lévy dynamics of enhanced diffusion: applications to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987)
Tian, Y., Nieto, J.: The applications of critical-point theory to discontinuous fractional-order differential equations. Proc. Edinb. Math. Soc. 60, 1021–1051 (2017)
Torres, C.: Existence of solution for a general fractional advection-dispersion equation. Anal. Math. Phys. 9, 1303–1318 (2019)
Zhang, W., Liu, W.: Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses. Appl. Math. Lett. 99, 1–7 (2019)
Zhao, Y., Tang, L.: Multiplicity results for impulsive fractional differential equations with p-Laplacian via variational methods. Bound. Value Probl. 2017(123), 123 (2017)
Acknowledgements
The authors would like to thank the editor and reviewers for the valuable comments that contributed to the improvements of the article.
Funding
The first author (Yan Qiao) is supported by the Research Project of the Natural Science of the Jiangsu Higher Education Institutions (Grant NO.: 22KJB110013). The second author (Fangqi Chen) is supported by the National Natural Science Foundation of China (Grant NOs.: 11872201, 12172166).
Author information
Authors and Affiliations
Contributions
All authors have made equal contributions to this article and reviewed it.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Qiao, Y., Chen, F., An, Y. et al. New results on fractional advection–dispersion equations. Bound Value Probl 2024, 101 (2024). https://doi.org/10.1186/s13661-024-01910-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-024-01910-x