Skip to main content

Boundedness of solutions to a second-order periodic system with p-Laplacian and unbounded perturbation terms

Abstract

The second-order periodic system with p-Laplacian and unbounded time-dependent perturbation terms is investigated. Using the principle integral method, it is shown that under certain assumptions on the unbounded and periodic terms, all solutions to the equation possess boundedness.

1 Introduction and main result

Consider the following second-order differential equation

$$ (\varphi _{p}(x'))'+a\varphi _{p}(x^{+})-b\varphi _{p}(x^{-})+z(t)f(x)=e(t), $$
(1.1)

where \(\varphi _{p}(s)=|s|^{p-2}s\) with constant \(p>2\). Variable \(x\in \mathbb{R}\), \(t\in \mathbb{R}\), \(x^{+}=max(x,0)\), \(x^{-}=max(-x,0)\). a and b are positive constants (\(a \neq b\)) satisfying \(a^{-\frac{1}{p}}+b^{-\frac{1}{p}}=2\omega ^{-1}\), ω is an irrational number, \(f(x)=o(|x|)\), \(z(t)\) and \(e(t)\) are \(2\pi _{p}\) periodic functions with \(\pi _{p}=\frac{2\pi (p-1)^{\frac{1}{p}}}{psin\frac{\pi}{p}}\).

When \(p=2\), Eq. (1.1) is turned into

$$ x''+ax^{+}-bx^{-}+z(t)f(x)=e(t),\quad \pi _{p}=\pi . $$
(1.2)

Provided that \(z(t)f(x)=0\), \(e(t)=1+\gamma h(t)\) in which \(h(t)\) is a suitable function, investigating the boundedness of solutions to Eq. (1.2) is very complicated. Ortega [1] proves that every solution to Eq. (1.2) is bounded if \(h\in C^{4}(\mathbb{S}^{1})\), where \(\mathbb{S}^{1}=\mathbb{R}/2\pi \mathbb{Z}\), and γ is sufficiently small. Under certain conditions on the initial data, Alonso and Ortega [2] obtain that there exists a function \(e(t)\) to ensure that all solutions to Eq. (1.2) are unbounded. Ambrosio [3] establishes the boundedness to solutions to fractional relativistic Schrödinger equations. A differential inclusion system involving the \(p(t)\)-Laplacian is investigated in [4]. Giacomoni et al. [5] utilize the bifurcation theory to discuss the multiplicity for a strongly singular quasi-linear problem. The asymptotic properties of solutions for a second-order nonlinear discrete equation of the Emden-Fowler type are acquired in [6]. Under appropriate restrictions, Jiao et al. [7] discuss the boundedness of all solutions to Eq. (1.2) (see also [8–10]).

For \(p\geq 2\), when \(a^{-\frac{1}{p}}+b^{-\frac{1}{p}}=2\omega ^{-1}\), where \(\omega ^{-1}\) is an irrational number, Yang [11] investigates Eq. (1.1) and obtains that all the solution to Eq. (1.1) are bounded under certain assumptions. Liu [12] discusses the bounded condition for Eq. (1.1) provided that f is smooth and \(\lim \limits _{x\rightarrow \pm \infty}f(x)\) is finite. Ma [13] discusses the bounded condition for Eq. (1.1) provided that f is unbounded and \(z(t)=1\).

When \(p=2\), without the assumption that \(\lim \limits _{x\rightarrow \pm \infty}f(x)\) is finite, Zhang [14] has acquired the conditions to ensure that each solution of Eq. (1.1) is bounded. In this work, we will extend the result in [14] to the case \(p>2\) under the following assumptions:

\((A_{1}): z(t), e(t)\in C^{6}(\mathbb{S}^{1})\), where \(\mathbb{S}^{1}=\mathbb{R}/2\pi _{p}\mathbb{Z}\).

\((A_{2})\): If \(f(x)\in C^{6}(\mathbb{R}\setminus \{0\})\cap \mathbb{C}^{0}( \mathbb{\mathbb{R}})\), then there are two positive constants C and \(\frac{1}{p-1}<\gamma <1\), such that \(|x^{k}f^{(k)}(x)|\leq C|x|^{\gamma}\), provided that \(x\in \mathbb{R}\setminus \{0\}\) and \(0\leq k\leq 6\).

\((A_{3})\): There exist positive constants \(\beta _{1}\) and \(\beta _{2}\) such that \(p\beta _{1}>q\beta _{2}>0\), where positive constants p and q satisfy \(\frac{1}{p}+\frac{1}{q}=1\) and

$$\begin{aligned} xf(x)\geq \beta _{1}|x|^{\gamma +1},\ \ x^{2}f'(x)\leq \beta _{2}|x|^{ \gamma +1}, \quad x\in \mathbb{R}\setminus \{0\}. \end{aligned}$$

Here, we mention that condition \((A_{1})\) does not require \(z(t)=1\), namely, condition \((A_{1})\) is different from \(z(t)=1\) in Ma [13]. Now, we state our main conclusion.

Theorem 1.1

Assume that \(p>2\) and \((A_{1})-(A_{3})\) hold and \(\hat{z}=\frac{1}{2\pi _{p}}\int _{0}^{2\pi _{p}}z(t)dt\neq 0\). Then every solution of Eq. (1.1) is bounded, namely, \(\sup \limits _{t\in \mathbb{R}}(|x(t)|+|x'(t)|)<\infty \).

We set \(F(x)=\int _{0}^{x}f(s)ds\). In this work, we utilize c and C to denote any positive constants (not concerning their quantity). k, l, m and n are nonnegative integers.

The structure of this work is the following: Sect. 2 presents action-angle variables, exchanging time and angle variables, and several lemmas. Section 3 provides the proof of Theorem 1.1.

2 Preliminaries

In this part, we provide several lemmas that help prove Theorem 1.1. Throughout Sect. 2, we assume that the hypotheses of Theorem 1.1 always hold.

2.1 Action-angle coordinates

Let \(x'=-\omega \varphi _{q}(y) \), then \(y=-\omega ^{1-p}\varphi _{p}(x')\), and the equivalent form of Eq. (1.1) is the following:

$$ x'=-\omega \varphi _{q}(y),\quad \quad y'=\omega [a_{1}\varphi _{p}(x^{+})-b_{1} \varphi _{p}(x^{-})]+\omega ^{1-p}[z(t)f(x)-e(t)] $$

with the Hamiltonian function

$$ H(x,y,t)=\frac{\omega}{q}|y|^{q}+\frac{\omega}{p}(a_{1}|x^{+}|^{p}+b_{1}|x^{-}|^{p})+ \omega ^{1-p} (z(t)F(x)-e(t)x), $$
(2.1)

where \(a_{1}=\omega ^{-p}a\), \(b_{1}=\omega ^{-p}b\), \(a_{1}\) and \(b_{1}\) satisfy \(a_{1}^{-\frac{1}{p}}+b_{1}^{-\frac{1}{p}}=2\).

Let \(sin_{p}(t)\) satisfy the problem

$$ (\varphi _{p}(C'(t)))'+\varphi _{p}(C(t))=0,\quad C(0)=0,\quad C'(0)=1. $$

From the conclusions in [15–17], we confirm that \(sin_{p}(t)\) is a \(2\pi _{p}\)-periodic \(C^{2}\) odd function with \(sin_{p}(\pi _{p}-t)=sin_{p}(t)\) for \(t\in [0,\frac{\pi _{p}}{2}]\) and \(sin_{p}(2\pi _{p}-t)=-sin_{p}(t)\) for \(t\in [\pi _{p},2\pi _{p}]\). Moreover, for \(t\in [0,\frac{\pi _{p}}{2}]\) and \(sin_{p}'(t)>0\), \(sin_{p}(t)\in (0,(p-1)^{\frac{1}{p}})\) is implicitly given by

$$ \int _{0}^{sin_{p}(t)}\frac{ds}{(1-\frac{s^{p}}{p-1})^{\frac{1}{p}}}=t. $$

Suppose that \(v(t)\) satisfies the initial problem

$$ (\varphi _{p}(x'(t)))'+a_{1}\varphi _{p}(x^{+})-b_{1}\varphi _{p}(x^{-})=0, \quad x(0)=(p-1)^{\frac{1}{p}},\quad x'(0)=0. $$

Letting \(\varphi _{p}(v')=u\) and \(q=p/(p-1)>1\) yields

$$ \frac{|u|^{q}}{q}+\frac{a_{1}|v^{+}|^{p}+b_{1}|v^{-}|^{p}}{p}= \frac{a_{1}}{q}. $$
(2.2)

Using (2.2), we obtain that the action-angle coordinate transformation \(\psi _{0}\): \(x= (d_{1}r)^{\frac{1}{p}}v(\theta )\), \(y=(d_{1}r)^{\frac{1}{q}}u( \theta )\) with \(d_{1}=pa_{1}^{-1}\). \(\psi _{0}\) is a symplectic transformation since its value of the Jacobian determinant is 1. Under \(\psi _{0}\), Hamiltonian function (2.1) is transformed into

$$ h(r,\theta ,t)=\omega r+\omega ^{1-p}z(t)F((d_{1}r)^{\frac{1}{p}}v( \theta ))-\omega ^{1-p}e(t)(d_{1}r)^{\frac{1}{p}}v(\theta )\in \mathbb{C}^{1,1,6}(\mathbb{R^{+}}\times \mathbb{S}^{1}\times \mathbb{S}^{1}). $$
(2.3)

Let \(\Xi =\{\theta \in \mathbb{S}^{1}:v(\theta )=0\}\). When \(\theta \in \mathbb{S}^{1}\backslash \Xi \) (\(t\in \mathbb{S}^{1}\) is a parameter), we have \(h(r,t,\theta )\in \mathbb{C}^{6}\) with respect to r.

2.2 Lemmas

Utilizing the ideas in [13, 14, 18], from conditions \((A_{2})\) and \((A_{3})\), we obtain the following conclusions.

Lemma 2.1

For \(r\gg 1, k\leq 6\), it holds that

$$\begin{aligned}& |\partial _{r}^{k}F((d_{1}r)^{\frac{1}{p}}v(\theta ))|\leq Cr^{-k+ \frac{\gamma +1}{p}},\\& |\partial _{r}^{k}f((d_{1}r)^{\frac{1}{p}}v(\theta ))|\leq Cr^{-k+ \frac{\gamma}{p}}, \end{aligned}$$

in which \(\theta \in \mathbb{S}^{1}\) provided that \(k=1\); \(\theta \in \mathbb{S}^{1}\setminus \Xi \) if \(k\geq 2\).

Lemma 2.2

Let

$$ \bar{F}(r)=\int _{0}^{2\pi _{p}}F((d_{1}\omega ^{-1}r)^{\frac{1}{p}}v( \theta ))d\theta . $$
(2.4)

For \(r\gg 1\), the following conclusions hold

$$\begin{aligned}& |\bar{F}^{(k)}(r)|\leq Cr^{-k+\frac{\gamma +1}{p}},\quad k\leq 6,\\& \quad \bar{F}'(r)\geq cr^{-1+\frac{\gamma +1}{p}} \end{aligned}$$

and

$$ \bar{F}''(r) \leq -Cr^{-2+\frac{\gamma +1}{p}}. $$

Proof

For the sake of simplicity, we write \(x=(d_{1}\omega ^{-1}r)^{\frac{1}{p}}v(\theta )\). Using (2.4) and noticing that \(\Xi \bigcap [0,2\pi _{p}]\) is a finite set, we have

$$ \bar{F}'(r)=\frac{1}{pr}\int _{[0,2\pi _{p}]\setminus \Xi}f(x)xd \theta . $$

Using condition (A3) yields

$$ \bar{F}'(r)=\frac{1}{pr}\int _{[0,2\pi _{p}]\setminus \Xi}f(x)xd \theta \geq \frac{\beta _{1}}{pr}\int _{[0,2\pi _{p}]\setminus \Xi}|x|^{ \gamma +1}d\theta =cr^{-1+\frac{\gamma +1}{p}}. $$

Differentiating (2.4) with respect to variable r, from the above analysis and condition (A3), we have

$$\begin{aligned} & \bar{F}''(r)=\frac{1}{p^{2}r^{2}}\int _{[0,2\pi _{p}]\setminus \Xi}f(x)x^{2}d \theta -\frac{1}{qr}\bar{F}'(r) \\ &\,\;\;\quad \quad \quad \leq \frac{\beta _{2}}{p^{2}r^{2}}\int _{[0,2 \pi _{p}]\setminus \Xi}|x|^{\gamma +1}d\theta -\frac{1}{qr}\bar{F}'(r) \\ &\,\;\;\quad \quad \quad \leq \frac{\beta _{2}}{pr\beta _{1}}\bar{F}'(r)- \frac{1}{qr}\bar{F}'(r) \\ &\,\;\;\quad \quad \quad = \Big(\frac{\beta _{2}}{p\beta _{1}}- \frac{1}{q}\Big)\frac{\bar{F}'(r)}{r} \\ &\,\;\;\quad \quad \quad \leq \Big(\frac{\beta _{2}}{p\beta _{1}}- \frac{1}{q}\Big)cr^{-2+\frac{\gamma +1}{p}}, \end{aligned}$$

which finishes the proof. □

From Lemmas 2.1 and 2.2. combined with condition \((A_{1})\), we obtain that the following conclusion holds.

Lemma 2.3

Let \(h_{1}(r,\theta ,t)=\omega ^{1-p}z(t)F((d_{1}r)^{\frac{1}{p}}v( \theta ))-\omega ^{1-p}e(t)(d_{1}r)^{\frac{1}{p}}v(\theta )\). For \(r\gg 1,t\in \mathbb{S}^{1}\) then

$$ |\partial _{r}^{k}\partial _{t}^{l}h_{1}(r,\theta ,t)|\leq c r^{-k+ \frac{\gamma +1}{p}}, $$
(2.5)

in which \(\theta \in \mathbb{S}^{1}\) provided that \(k=1\); \(\theta \in \mathbb{S}^{1}\setminus \Xi \) if \(k\geq 2\).

Let

$$ g(r,\theta ,t)=r^{-\frac{1}{p}}h_{1}(r,\theta ,t). $$
(2.6)

From Lemma 2.3, for \(r\gg 1 \), we have

$$ |\partial _{r}^{k}\partial _{t}^{l}g(r,\theta ,t)|\leq cr^{-k+ \frac{\gamma}{p}}, \quad k+l\leq 6. $$
(2.7)

Lemma 2.4

For \(r\gg 1, k+l\leq 6\), then

$$\begin{aligned} \left \{ \textstyle\begin{array}{l} 0< cr\leq h(r,t,\theta )< Cr, \\ \partial _{r}h(r,t,\theta )>\frac{\omega}{2}, \\ |\partial _{r}^{k}\partial _{t}^{l}h(r,t,\theta )|\leq Cr^{-k+1}, \end{array}\displaystyle \right . \end{aligned}$$
(2.8)

in which \(\theta \in \mathbb{S}^{1}\) provided that \(k=1\); \(\theta \in \mathbb{S}^{1}\setminus \Xi \) if \(k\geq 2\).

Proof

From (2.3) and Lemma 2.1, we obtain

$$ \lim _{r\rightarrow +\infty}\frac{h}{r}=\omega >0, $$

and for \(r\gg 1\),

$$ \frac{\partial h}{\partial r}=\omega +\omega ^{1-p}z(t)\partial _{r}F((d_{1}r)^{ \frac{1}{p}}v(\theta ))-\frac{d_{1}}{p}\omega ^{1-p}e(t)(d_{1}r)^{ \frac{1}{p}-1}v(\theta )>\frac{\omega}{2}, $$

which together with (2.5)–(2.7) completes the proof of (2.8). □

Lemma 2.5

[15] Provided that function \(f(x,t)\) satisfies

$$ |\partial _{x}^{k}\partial _{t}^{l}f(x,t)|\leq Cx^{-k}|f(x,t)| $$

for all sufficiently large \(x>0\) and all \(k,l:k+l\leq N\), where \(N\in \mathbb{N}\). Suppose that

$$ \partial _{x}f(x,t)\geq c x^{-1}f(x,t)>0 $$

for all sufficiently large \(x>0\). Then, the inverse function \(g(y,t)\) of f in x satisfies

$$ |\partial _{y}^{k}\partial _{t}^{l}g(y,t)|\leq Cy^{-k}g(y,t) $$

for all \(K+l\leq N\) and all sufficiently large y.

Using Lemmas 2.3 and 2.4, for \(h\gg 1, t\in \mathbb{S}^{1}\), we have

$$ |\partial _{h}^{k}\partial _{t}^{l}r(h,t,\theta )|\leq Ch^{-k+1}, \quad k+l\leq 6,\quad \theta \in \mathbb{S}^{1}\setminus \Xi . $$
(2.9)

Thus, we write (2.3) as

$$ h(r,\theta ,t)=\omega r +r^{\frac{1}{p}}g(r,\theta ,t),\quad r=r(h,t, \theta ). $$
(2.10)

In fact,Footnote 1\(v(t)\in C^{2}(\mathbb{S}^{1})\) does not belong to \(C^{4}(\mathbb{S}^{1})\). We exchange the time and angle variables to prove Theorem 1.1.

2.3 Exchange of time and angle variables

Based on the conclusions in [15], the identity \(rd\theta -hdt=-(hdt-rd\theta )\) guarantees that if we can solve \(r=r(h,t,\theta )\) from (2.3) as a function of h, t, θ, then

$$ \frac{dh}{d\theta}=-\frac{\partial r}{\partial t}r(h,t,\theta ), \quad \quad \frac{dt}{d\theta}=\frac{\partial r}{\partial h}r(h,t, \theta ), $$
(2.11)

i.e., Eq. (2.11) is a Hamiltonian system with a Hamiltonian function \(r=r(h,t,\theta )\) in which action, angle, and time variables are h, t, and θ, respectively. The following lemma gives a more detailed description of r in (2.10) according to the magnitude of h.

Lemma 2.6

Provided that \(h\gg 1, \theta \in \mathbb{S}^{1}\setminus \Xi \), \(t\in \mathbb{S}^{1}\), it holds that

$$ r(h,t,\theta )=\omega ^{-1}h-\omega ^{-p}z(t)F((d_{1}\omega ^{-1}h)^{ \frac{1}{p}}v(\theta ))+R(h,t,\theta ), $$
(2.12)

where

$$ |\partial _{h}^{k}\partial _{t}^{l}R(h,t,\theta )|\leq Ch^{-k+max\{ \gamma ,\frac{1}{p}\}},\quad k+l\leq 6. $$
(2.13)

Proof

Using the identity (2.10) yields

$$ r=\omega ^{-1}h-\omega ^{-1}r^{\frac{1}{p}}g(r,t,\theta ). $$
(2.14)

Utilizing the identity (2.6) and the Taylor formula, we obtain that function \(g=g(r,\theta ,t)\) satisfies

$$\begin{aligned} & g(r,\theta ,t)=g(\omega ^{-1}h-\omega ^{-1}r^{\frac{1}{p}}g, \theta ,t) \\ &\quad \quad = g(\omega ^{-1}h,\theta ,t)+R_{0}(h,t,\theta ) \\ &\quad \quad =(\omega ^{-1}h)^{-\frac{1}{p}}\omega ^{1-p}z(t)F((d_{1} \omega ^{-1}h)^{\frac{1}{p}}v(\theta ))-d_{1}^{\frac{1}{p}}\omega ^{1-p} e(t)v(\theta )+R_{0}(h,t,\theta ), \end{aligned}$$
(2.15)

in which \(R_{0}(h,t,\theta )=-\int _{0}^{1}g_{r}^{\prime }(\omega ^{-1}h-s\omega ^{-1}r^{ \frac{1}{p}}g,\theta ,t))\omega ^{-1}r^{\frac{1}{p}}gds\).

Substituting (2.14) into (2.15), we have

$$\begin{aligned} & r=\omega ^{-1}h-\omega ^{-1}g(r,t,\theta )(\omega ^{-1}h)^{ \frac{1}{p}}(1-h^{-1}r^{\frac{1}{p}}g)^{\frac{1}{p}} \\ &\quad =\omega ^{-1}h-\omega ^{-1}g(r,t,\theta )(\omega ^{-1}h)^{ \frac{1}{p}} \\ &\quad \quad \quad \quad \quad \quad +\frac{1}{p}\omega ^{-1}g(r,t, \theta ) (\omega ^{-1}h)^{\frac{1}{p}}\int _{0}^{1}(1-sh^{-1}r^{ \frac{1}{p}}g)^{\frac{1}{p}-1}h^{-1}r^{\frac{1}{p}}gds \\ &\quad =\omega ^{-1}h-\omega ^{-p}z(t)F((d_{1}\omega ^{-1}h)^{ \frac{1}{p}}v(\theta ))+R_{1}(h,t,\theta )+R_{2}(h,t,\theta )+R_{3}(h,t, \theta ), \end{aligned}$$

where

$$\begin{aligned} &R_{1}(h,t,\theta )=\omega ^{-(2+\frac{1}{p})}h^{\frac{1}{p}}\int _{0}^{1}g_{r}( \omega ^{-1}h-s\omega ^{-1}r^{\frac{1}{p}}g,\theta ,t)r^{\frac{1}{p}}gds, \\ &R_{2}(h,t,\theta )=\frac{1}{p}\omega ^{-(1+\frac{1}{p})}h^{ \frac{1}{p}-1}\int _{0}^{1}(1-sh^{-1}r^{\frac{1}{p}}g)^{\frac{1}{p}-1}r^{ \frac{1}{p}}g^{2}ds, \\ &R_{3}(h,t,\theta )=d_{1}^{\frac{1}{p}}\omega ^{-(p+\frac{1}{p})}v( \theta )e(t)h^{\frac{1}{p}}. \end{aligned}$$

Direct computation gives

$$ \partial _{h}^{k}\partial _{t}^{l}r^{\frac{1}{p}}(h,t,\theta )=\sum r^{ \frac{1}{p}-m}\partial _{h}^{k_{1}}\partial _{t}^{l_{1}}r(h,t,\theta ) \partial _{h}^{k_{2}}\partial _{t}^{l_{2}}r(h,t,\theta )\cdot \cdot \cdot \partial _{h}^{k_{m}}\partial _{t}^{l_{m}}r(h,t,\theta ) $$

with \(1\leq m\leq k+l\), \(k_{1}+k_{2}\cdot \cdot \cdot +k_{m}=k\) and \(l_{1}+l_{2}+\cdots +l_{m}=l\). Using (2.9) yields

$$ |\partial _{h}^{k}\partial _{t}^{l}r^{\frac{1}{p}}(h,t,\theta )|\leq Ch^{-k+ \frac{1}{p}}. $$

Similarly, we acquire

$$\begin{aligned}& |\partial _{h}^{k}\partial _{t}^{l}g(h,t,\theta )|\leq Ch^{-k+ \frac{\gamma}{p}},\\& |\partial _{h}^{k}\partial _{t}^{l}g_{r}(\omega ^{-1}h-s\omega ^{-1}r^{ \frac{1}{p}}g,t,\theta )|\leq C^{-k-1+\frac{\gamma}{p}}. \end{aligned}$$

Using \(p>2\) and the expression of \(R_{1}\) yields

$$ |\partial _{h}^{k}\partial _{t}^{l}R_{1}(h,t,\theta )|\leq Ch^{-k-1+ \frac{2+2\gamma}{p}}\leq C h^{-k+\gamma}. $$

Analogously, we obtain

$$\begin{aligned}& |\partial _{h}^{k}\partial _{t}^{l}R_{2}(h,t,\theta )|\leq Ch^{-k+ \gamma},\\& |\partial _{h}^{k}\partial _{t}^{l}R_{3}(h,t,\theta )|\leq Ch^{-k+ \frac{1}{p}}. \end{aligned}$$

Letting \(R(h,t,\theta )=R_{1}(h,t,\theta )+R_{2}(h,t,\theta )+R_{3}(h,t, \theta )\), we obtain that inequality (2.13) holds. □

2.4 Canonical transformation

In this part, two lemmas are established to make sure that the Poincare map of the new system is close to a twist map.

Lemma 2.7

There exists a canonical transformation \(\psi _{1}\) of the form: \(\psi _{1}:(\lambda ,\varphi )\rightarrow (h,t)\)

$$ h=\lambda +U(\lambda ,t,\theta ),\quad \varphi =t+V(\lambda ,t, \theta ), $$

where U and V are \(2\pi _{p}\) periodic about θ. Under \(\psi _{1}\), the Hamiltonian function (2.12) is transformed into

$$ r_{1}(\lambda ,\varphi ,\theta )=\omega ^{-1}\lambda -\omega ^{-p} \hat{z}F((d_{1} \lambda \omega ^{-1})^{\frac{1}{p}}v(\theta ))+ \bar{R}_{1}(\lambda ,\varphi ,\theta ). $$
(2.16)

Moreover, for \(\lambda \gg 1, \theta \in \mathbb{S}^{1}\setminus \Xi \), \(t\in \mathbb{S}^{1}\), it holds that

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}\bar{R}_{1}(\lambda , \varphi ,\theta )|\leq C\lambda ^{-k+max\{\gamma ,\frac{\gamma +1}{p} \}},\quad k+l\leq 5. $$
(2.17)

Proof

We make a transformation \(\psi _{1}:(\lambda ,\varphi )\rightarrow (h,t)\) implicitly given by

$$ h=\lambda +\partial _{t}S_{1}(\lambda ,t,\theta ),\quad \varphi =t+ \partial _{\lambda}S_{1}(\lambda ,t,\theta ) $$
(2.18)

with

$$ S_{1}(\lambda ,t,\theta )=\int _{0}^{t}\omega ^{1-p}z_{1}(t)F\Big((d_{1} \lambda \omega ^{-1})^{\frac{1}{p}}v(\theta )\Big)dt. $$

Under \(\psi _{1}\), Hamiltonian (2.12) becomes

$$\begin{aligned} &r_{1}(\lambda ,\varphi ,\theta )=\omega ^{-1}(\lambda +\partial _{t}S_{1})- \omega ^{-p}\hat{z}F\Big((d_{1}\omega ^{-1}(\lambda +\partial _{t}S_{1}))^{ \frac{1}{p}}v(\theta )\Big)+\partial _{\theta}S_{1} \\ &\quad \quad \quad \quad \quad \quad -\omega ^{-p}z_{1}(t)F\Big((d_{1} \omega ^{-1}(\lambda +\partial _{t}S_{1}))^{\frac{1}{p}}v(\theta ) \Big)+R(\lambda +\partial _{t}S_{1},t,\theta ) \\ &\quad \quad \quad \quad =\omega ^{-1}\lambda -\omega ^{-p}\hat{z}F \Big((d_{1}\lambda \omega ^{-1})^{\frac{1}{p}}v(\theta )\Big)+R_{4}( \lambda ,\varphi ,\theta ) \\ &\quad \quad \quad \quad \quad \quad \quad +R_{5}(\lambda ,\varphi , \theta )+R_{6}(\lambda ,\varphi ,\theta )+R_{7}(\lambda ,\varphi , \theta ), \end{aligned}$$

where \(z_{1}(t)=z(t)-\hat{z}\) and

$$\begin{aligned} &R_{4}=-\omega ^{p}\hat{z}\int _{0}^{1}\partial _{\lambda}F\Big((d_{1} \omega ^{-1}(\lambda +\mu \partial _{t}S_{1}))^{\frac{1}{p}}v(\theta ) \Big)\partial _{t}S_{1}d\mu \\ &\quad =-\frac{\hat{z}\omega ^{p}}{p}\int _{0}^{1}f\Big((d_{1} \omega ^{-1}(\lambda +\mu \partial _{t}S_{1}))^{\frac{1}{p}}v(\theta ) \Big)v(\theta )d_{1}\omega ^{-1} (\lambda +\mu \partial _{t}S_{1})^{- \frac{1}{q}}\partial _{t}S_{1}d\mu , \end{aligned}$$
(2.19)
$$\begin{aligned} &R_{5}=-\int _{0}^{1}\omega ^{-p}z_{1}(t)\partial _{d_{1}\omega ^{-1} \lambda}F\Big((d_{1}\omega ^{-1} (\lambda +\mu \partial _{t}S_{1}))^{ \frac{1}{p}}v(\theta )\Big)d_{1}\omega ^{-1}\partial _{t}S_{1}d\mu , \\ &R_{6}=\partial _{\theta}S_{1}(\lambda ,t,\theta ), \\ &R_{7}=R(\lambda +\partial _{t}S_{1},t,\theta ). \end{aligned}$$

From Lemma 2.1, for \(\lambda \gg 1\) and \(k+l\leq 6\), we have

$$ |\partial _{\lambda}^{k}\partial _{t}^{l}S_{1}(\lambda ,t,\theta )| \leq C\lambda ^{-k+\frac{\gamma +1}{p}}, $$
(2.20)

which together with (2.18) yields

$$\begin{aligned} \left \{ \textstyle\begin{array}{l} \frac{1}{2}< \partial _{\varphi}t(\lambda ,\varphi ,\theta )< \frac{3}{2},\quad |\partial _{\lambda}t(\lambda ,\varphi ,\theta )|< \lambda ^{-2+\frac{\gamma +1}{p}}, \\ |\partial _{\lambda}h(\lambda ,\varphi ,\theta )|\leq C,\quad | \partial _{\varphi}h(\lambda ,\varphi ,\theta )|\leq C\lambda ^{ \frac{\gamma +1}{p}}. \end{array}\displaystyle \right . \end{aligned}$$
(2.21)

For \(2\leq k+l\leq 5\), utilizing direct calculations gives rise to

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}h(\lambda ,\varphi , \theta )|\leq C \lambda ^{-k+\frac{\gamma +1}{p}},\quad |\partial _{ \lambda}^{k}\partial _{\varphi}^{l}t(\lambda ,\varphi ,\theta )|\leq C \lambda ^{-k-1+\frac{\gamma +1}{p}}. $$
(2.22)

First, we prove \(|\partial _{\lambda}^{k}\partial _{\varphi}^{l}R_{4}|\leq C \lambda ^{-k+ \frac{\gamma +1}{p}}\). Direct computation gives

$$ \partial _{\lambda}^{k}\partial _{\varphi}^{l}\partial _{t}S_{1}( \lambda ,t,\theta )=\sum \partial _{\lambda}^{m}\partial _{t}^{n+1}S_{1}( \lambda ,t,\theta ) \partial _{\lambda}^{k_{1}}\partial _{\varphi}^{l_{1}} t\partial _{\lambda}^{k_{2}}\partial _{\varphi}^{l_{2}}t\cdot \cdot \cdot \partial _{\lambda}^{k_{n}}\partial _{\varphi}^{l_{n}}t $$

with \(1\leq m+n\leq k+l\), \(m+k_{1}+k_{2}\cdot \cdot \cdot +k_{m}=k\) and \(l_{1}+l_{2}+\cdots +l_{n}=l\). Using (2.20), (2.21), and (2.22) yields

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}\partial _{t}S_{1}| \leq C\lambda ^{-k+\frac{\gamma +1}{p}}. $$

In the same way, we obtain

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}(\lambda +\mu \partial _{t}S_{1})^{-\frac{1}{q}}|\leq C\lambda ^{-k-\frac{1}{q}} $$

and

$$ \Bigg|\partial _{\lambda}^{k}\partial _{\varphi}^{l}f\Big((d_{1} \omega ^{-1}(\lambda +\mu \partial _{t}S_{1}))^{\frac{1}{p}}v(\theta ) \Big)\Bigg|\leq C\lambda ^{-k+\frac{\gamma}{p}}. $$

Noticing \(0<\frac{1}{p-1}<\gamma <1\), from (2.19), we have \(|\partial _{\lambda}^{k}\partial _{\varphi}^{l}R_{4}|\leq C \lambda ^{-k+ \frac{\gamma}{p}}\). Similarly, we obtain

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}R_{i}|\leq C \lambda ^{-k+ \frac{\gamma +1}{p}},\quad i=5,6. $$

Applying (2.13), (2.21), and (2.22) gives rise to

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}R_{7}|\leq C \lambda ^{-k+max \{\gamma ,\frac{1}{p}\}}. $$

Set \(\bar{R}_{1}(\lambda ,\varphi ,\theta )=R_{4}(\lambda ,\varphi , \theta )+R_{5}(\lambda ,\varphi ,\theta ) +R_{6}(\lambda ,\varphi , \theta )+R_{7}(\lambda ,\varphi ,\theta )\). Hence, inequality (2.17) holds. □

Next, we eliminate the new time variable θ at the first time by constructing the transformation.

Lemma 2.8

There exists a canonical transformation \(\psi _{2}: (\lambda ,\varphi )\rightarrow (\lambda ,\tau )\):

$$ \psi _{2}:\lambda =\lambda ,\quad \varphi =\tau +\partial _{\lambda}S_{2}( \lambda ,\theta )). $$

Under \(\psi _{2}\), the Hamiltonian (2.16) is transformed into

$$ r_{2}(\lambda ,\tau ,\theta )=\omega ^{-1}\lambda -\omega ^{-p} \hat{z}\bar{F}(\lambda )+\bar{R}_{2}(\lambda ,\tau ,\theta ). $$
(2.23)

The new disturbance term \(\bar{R}_{2}\) satisfies

$$ |\partial _{\lambda}^{k}\partial _{\tau}^{l}\bar{R}_{2}(\lambda , \tau ,\theta )|\leq C\lambda ^{-k+max\{\gamma ,\frac{\gamma +1}{p}\}} $$
(2.24)

for \(k+l\leq 5, \lambda \gg 1\), \(\theta \in \mathbb{S}^{1}\setminus \Xi \) and \(t\in \mathbb{S}^{1}\).

Proof

We choose generating function

$$ S_{2}(\lambda ,\theta )=\int _{0}^{\theta}\omega ^{-p}\hat{z}[F((d_{1} \omega ^{-1}\lambda )^{\frac{1}{p}}v(\theta ))-\bar{F} (\lambda )]d \theta . $$

Under \(\psi _{2}\), then the Hamiltonian (2.16) is transformed into

$$ r_{2}(\lambda ,\tau ,\theta )=r_{1}(\lambda ,\varphi ,\theta )+ \partial _{\theta}S_{2}=\omega ^{-1}\lambda -\omega ^{-p}\hat{z} \bar{F}(\lambda )+\bar{R}_{2}(\lambda ,\tau ,\theta ), $$

where

$$ \bar{R}_{2}(\lambda ,\tau ,\theta )=\bar{R}_{1}(\lambda ,\tau + \partial _{\lambda}S_{2},\theta ). $$
(2.25)

Thus, inequality (2.24) is obtained from (2.17), (2.23), (2.25) and Lemma 2.2. The proof of Lemma 2.8 is finished. □

3 Proof of main result

Without loss of generality, we only need to prove Theorem 1.1 for the case \(\hat{e}>0\). For \(\hat{e}<0\), the proof is similar. For given \(0<\delta <1\), define transformation \(\psi _{3}:(\lambda ,\tau )\rightarrow (v,\tau )\) by

$$ \bar{F}'(\lambda )=\delta v\omega ^{p}(\hat{z})^{-1},\quad \tau = \tau ,\quad 1\leq v \leq 4. $$
(3.1)

Due to \(\lambda \rightarrow +\infty \), \(\bar{F}'(\lambda )\rightarrow 0\), thus \(\lambda \rightarrow +\infty \Leftrightarrow \delta \rightarrow 0\). For \(\lambda =\lambda (\delta v)\), the following estimates hold.

Lemma 3.1

\(c\delta ^{\frac{p}{\gamma +1-p}}\leq \lambda (\delta v)\leq C\delta ^{ \frac{p}{\gamma +1-p}}\), \(|\partial _{v}^{k}\lambda (\delta v)| \leq C \lambda (\delta v)\quad k\leq 4\).

Proof

From Lemma 2.2 and (3.1), we have \(c\delta ^{\frac{p}{\gamma +1-p}}\leq \lambda (\delta v)\leq C\delta ^{ \frac{p}{\gamma +1-p}}\).

Differentiating (3.1) with respect to v, we have \(\bar{F}''(\lambda )=\omega ^{p}\delta \hat{z}^{-1}\). Using Lemma 2.2 yields

$$ |\partial _{v}\lambda |=| \frac{\omega ^{p}\delta \hat{z}^{-1}}{\bar{F}''(\lambda )}|=| \frac{\omega ^{p}\delta \hat{z}^{-1}\lambda}{\bar{F}''(\lambda )\lambda}| \leq |\frac{\delta \lambda}{\lambda ^{-1+\frac{\gamma +1}{p}}}|=| \frac{c\delta \lambda}{\bar{F}'(\lambda )}|= \frac{c\delta \lambda}{\delta v}\leq C\lambda . $$

Taking \(k(k>1)\) order derivative about v on both sides of (3.1), we obtain

$$ \bar{F}''(\lambda )\partial _{v}^{k}\lambda +\sum _{s=2}^{s=k}\bar{F}^{(s+1)} \partial _{v}^{k_{1}}\lambda \partial _{v}^{k_{2}}\cdot \cdot \cdot \partial _{v}^{k_{s}}\lambda =0 $$

with \(k_{1}+k_{2}+\cdots +k_{s}=k\). Thus,

$$ \partial _{v}^{k}\lambda =\sum _{s=2}^{s=k} \frac{\bar{F}^{(s+1)}\partial _{v}^{k_{1}} \lambda \partial _{v}^{k_{2}}\cdot \cdot \cdot \partial _{v}^{k_{s}}\lambda}{\bar{F}''(\lambda )}. $$

From Lemma 2.2, using the induction methods yields

$$\begin{aligned} |\partial _{v}^{k}\lambda |\leq C \lambda , \quad k=2,3,4, \end{aligned}$$

which completes the proof of Lemma 3.1. □

From the definition \(\psi _{3}\), we have

$$ \frac{dv}{d\theta}=\delta ^{-1}\omega ^{-p}\hat{z}\bar{F}''(\lambda ) \frac{d\lambda}{d\theta}=\delta ^{-1}\omega ^{-p}\hat{z} \bar{F}''( \lambda )\partial _{\tau}\bar{R}_{2}(\lambda ,\tau ,\theta ). $$

Introducing a new time variable Ï‘ by \(\theta =-\vartheta \) yields

$$ \frac{dv}{d\vartheta}=l_{1}(v,\tau ,\vartheta ,\delta ),\quad \frac{d\tau}{d\vartheta}=-\omega ^{-1}+\delta v+l_{2}(v,\tau , \vartheta ,\delta ), $$
(3.2)

where

$$\begin{aligned}& l_{1}(v,\tau ,\vartheta ,\delta )=\delta ^{-1}\omega ^{-p}\hat{z} \bar{F}''(\lambda )\partial _{\tau}\bar{R}_{2}(\lambda ,\tau ,- \vartheta ),\\& l_{2}(v,\tau ,\vartheta ,\delta )=-\partial _{\lambda}\bar{R}_{2}( \lambda ,\tau ,-\vartheta ). \end{aligned}$$

Lemma 3.2

Provided that \(p>2\), \(\frac{1}{p-1}<\gamma <1\), \(0<\delta \ll 1\), \(k+l\leq 4\) and \(\tau \in \mathbb{S}^{1}\setminus \Xi (i=1,2)\), it holds that

$$ |\partial _{v}^{k}\partial _{\tau}^{l}l_{i}(v,\tau ,\vartheta , \delta )|\leq C \delta ^{\sigma}, $$
(3.3)

where \(\sigma =\frac{p}{\gamma +1-p}(-1+\gamma )>0\).

Proof

For \(k=0\), we have

$$ |\partial _{\tau}^{l}l_{2}|=|\partial _{\lambda}\partial _{\tau}^{l} \bar{R}_{2}(\lambda ,\tau ,-\vartheta )|\leq C\lambda ^{-1+max\{ \frac{\gamma +1}{p},\gamma \}}\leq C\delta ^{\frac{p}{\gamma +1-p}(-1+max \{\frac{\gamma +1}{p},\gamma \})}\leq C\delta ^{\sigma}. $$

Using the assumption \(\gamma >\frac{1}{p-1}\) derives \(\frac{1+\gamma}{p}<\gamma \). We have \(|\partial _{\tau}^{l}l_{2}|\leq C\delta ^{\sigma}\).

For \(k>0\), we obtain

$$\begin{aligned} &|\partial _{v}^{k}\partial _{\tau}^{l}l_{2}|=|\partial _{v}^{k} \partial _{\tau}^{l}\partial _{\lambda}\bar{R}_{2}(\lambda ,\tau ,- \vartheta )| \\ &\quad \quad \quad \quad \leq C\lambda ^{-1+max\{\frac{\gamma +1}{p}, \gamma \}} \\ &\quad \quad \quad \quad \leq C\delta ^{\frac{p}{\gamma +1-p}(-1+max \{\frac{\gamma +1}{p},\gamma \})} \\ &\quad \quad \quad \quad \leq C\delta ^{\sigma}. \end{aligned}$$

For \(l_{1}\), we have the same estimate. The proof of Lemma 3.2 is completed. □

From Lemmas 3.1–3.2 and (3.3), we see that the solutions of (3.2) with initial value \(v(0)=v_{0}\in [1,2]\), \(\tau (0)=\tau _{0}\) do exist for \(0\leq \vartheta \leq 4\pi _{p}\) if \(\delta \ll 1\). Integrating (3.2) from 0 to \(2\pi _{p}\), we derive that Poincaré map P in (3.2) takes the following form

$$\begin{aligned} P:\left \{ \textstyle\begin{array}{l} \tau _{2\pi _{p}}=\tau _{0}-\omega ^{-1}2\pi _{p}+\delta (v_{0}+P_{2}(v_{0}, \tau _{0},\delta )), \\ v_{2\pi _{p}}=v_{0}+\delta P_{1}(v_{0},\tau _{0},\delta ), \end{array}\displaystyle \right . \end{aligned}$$

where \(|\partial _{v_{0}}^{k}\partial _{\tau _{0}}^{l}P_{i}|\leq C\delta ^{ \sigma -1}\) for \(k+l\leq 4\), \(i=1,2\).

Since P is a Poincarè map in (3.2), it is an area-preserving, and thus it possesses the intersection property in the annulus \([1,2]\times \mathbb{S}^{1}\). Namely, if Γ is an embedded circle in \([1,2]\times \mathbb{S}^{1}\) homotopic to a circle v= constant, then \(P(\Gamma )\cap \Gamma \neq \emptyset \) (see [18]). Now, we have verified that the mapping P satisfies all the conditions of Moser’s twist theorem. Hence, there exists an invariant curve \(\Gamma _{\delta}\) of P surrounding \(v_{0}=1\) if \(\delta \ll 1\). The \(\Gamma _{\delta}\) is located in ring domain \(\{(v,\tau )|\delta < v<2\delta \}\). Note that \(\delta \rightarrow 0\Leftrightarrow \lambda \rightarrow \infty \). The points \((\lambda ,\varphi ,\theta )\) satisfying \(r_{1}(\lambda ,\varphi ,\theta )=r_{1}(\lambda ,\varphi ,\theta )|_{( \lambda ,\varphi )\in \Gamma _{\delta}}\) form an invariant torus \(\mathbf{T}_{\delta}^{2}\) in the extended phase space \((\lambda ,\varphi ,\theta )\). Thus, \(\psi ^{-1}(\Gamma _{\delta})\) is an invariant torus for Eq. (2.1) in \((x,y,t)\in \mathbb{R}^{2}\times \mathbb{S}^{1}\), which is far away from \((0,0)\), where \(\psi =\psi _{1}\psi _{0}\). The solution of Eq. (2.1) starting from inside of \(\psi ^{-1}(\Gamma _{\delta})\) is contained inside of \(\psi ^{-1}(\Gamma _{\delta})\). Thus, the solution of Eq. (2.1) is bounded. The proof of Theorem 1.1 is finished.

Data availability

No datasets were generated or analysed during the current study.

Notes

  1. \(C^{4}\) is four times continuously differentiable functions in \(\mathbb{R}\) or \(\mathbb{S}^{1}\), and \(C^{6}\) is six times continuously differentiable functions in \(\mathbb{R}\) or \(\mathbb{S}^{1}\).

References

  1. Ortega, R.: Asymmetric oscillators and twist mappings. J. Lond. Math. Soc. 53, 325–342 (1996)

    Article  MathSciNet  Google Scholar 

  2. Alonso, J.M., Ortega, R.: Roots of unity and unbounded motions of an asymmetric oscillator. J. Differ. Equ. 143, 201–220 (1998)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, V.: A note on the boundedness of solutions for fractional relativistic Schrödinger equations. Bull. Math. Sci. 12(2), 2150010 (2022)

    Article  MathSciNet  Google Scholar 

  4. Cheng, J., Chen, P., Zhang, L.: Homoclinic solutions for a differential inclusion system involving the \(p(t)\)-Laplacian. Adv. Nonlinear Anal. 12, 20220272 (2023)

    Article  MathSciNet  Google Scholar 

  5. Giacomoni, J., dos Santos, L.M., Santos, C.A.: Multiplicity for a strongly singular quasilinear problem via bifurcation theory. Bull. Math. Sci. 13(1), 2250013 (2023)

    Article  MathSciNet  Google Scholar 

  6. Diblík, J., Korobko, E.: Asymptotic behavior of solutions of a second-order nonlinear discrete equation of Emden-Fowler type. Adv. Nonlinear Anal. 12, 20230105 (2023)

    Article  MathSciNet  Google Scholar 

  7. Jiao, L., Piao, D., Wang, Y.: Boundedness for the general semilinear Duffing equations via the twist theorem. J. Differ. Equ. 252, 91–113 (2012)

    Article  MathSciNet  Google Scholar 

  8. Zhang, S., Zhang, X.: Boundedness in asymmetric oscillations at resonance in a critical situation. Taiwan. J. Math. 26, 1219–1234 (2022)

    Article  MathSciNet  Google Scholar 

  9. Jiang, S.: Boundedness of solutions for a class of second-order differential equation with singularity. Bound. Value Probl. 2013, 84 (2013)

    Article  MathSciNet  Google Scholar 

  10. Xing, X.M., Wang, L.L., Lai, S.Y.: Existence and multiplicity of periodic solutions for a nonlinear resonance equation with singularities. Bound. Value Probl. 2023, 110 (2023)

    Article  MathSciNet  Google Scholar 

  11. Yang, X.: Boundedness in nonlinear oscillations. Math. Nachr. 268, 102–113 (2004)

    Article  MathSciNet  Google Scholar 

  12. Liu, B.: Boundedness of solutions for equations with p-Laplacian and an asymmetric nonlinear term. J. Differ. Equ. 207, 73–92 (2004)

    Article  MathSciNet  Google Scholar 

  13. Ma, X.: Bounded for equations with jumping p-Laplacian term. Ph.D. thesis, Ocean University of China, Qindao (2013)

  14. Zhang, T.: The Lagrange stability in the asymmetric oscillators with unbounded perturbation. Ma.D. thesis, Shandong University, Jinan (2011)

  15. Levi, M.: Quasiperiodic motions in superquadratic time-periodic potenials. Commun. Math. Phys. 1991(143), 43–83 (1991)

    Article  MathSciNet  Google Scholar 

  16. Gvedda, M., Veron, L.: Bifurcation phenomena associated to the p-Laplace operator. Proc. Am. Math. Soc. 310, 419–431 (1988)

    MathSciNet  Google Scholar 

  17. Liu, B.: Boundedness in asymmetric oscillations. J. Math. Anal. Appl. 231, 355–373 (1999)

    Article  MathSciNet  Google Scholar 

  18. Delpino, R., Zehnder, E.: Boundedness of solutions via the twist theorem. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 14, 79–95 (1987)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for their valuable suggestions and comments, which lead to the meaningful improvement of this work.

Funding

This work is supported by National Natural Science Foundation of China (No. 12361042) and the 14th Five Year Key Discipline of Xinjiang Autonomous Region (78756342).

Author information

Authors and Affiliations

Authors

Contributions

The three authors contributed equally to this paper.

Corresponding author

Correspondence to Shaoyong Lai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Wang, H. & Lai, S. Boundedness of solutions to a second-order periodic system with p-Laplacian and unbounded perturbation terms. Bound Value Probl 2024, 103 (2024). https://doi.org/10.1186/s13661-024-01911-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01911-w

Mathematics Subject Classification

Keywords